загрузка...
 
Карбоксидобактерии
Повернутись до змісту

Карбоксидобактерии

Это аэробные прокариоты, способные расти, используя оксид углерода в качестве единственного источника углерода и энергии. Таким свойством обладают некоторые представители родов Pseudomonas, Achromo- bacter, Comamonas и др. Это грамотрицательные прямые или слегка изогнутые палочки, подвижные.

Карбоксидобактерии могут расти автотрофно, ассимилируя СО2 в цикле Кальвина, а также использовать в качестве единственного источника углерода и энергии различные органические соединения и некоторые одноуглеродные субстраты, такие как метанол и формиат. При выращивании на среде с СО2 в качестве единственного источника углерода все карбоксидобактерии энергию могут получать за счет окисления молекулярного водорода. В большинстве случаев рост этих бактерий на среде с СО2 + Н2 происходит активнее, чем на среде с СО. Это дало основание рассматривать карбоксидобактерии как особую физиологическую подгруппу водородных бактерий.

Использование СО карбоксидобактериями происходит путем его окисления в соответствии с уравнением

2СО + О2 —? 2СО2 Далее продукт реакции используется по каналам автотрофного метаболизма. Таким образом, при выращивании карбоксидобактерий на среде с

СО в качестве единственного источника углерода и энергии источником углерода служит не СО, а СО2.

Общее уравнение обмена карбоксидобактерий может быть представлено в виде следующего уравнения:

24СО + 11О2 + Н2О —? 23СО2 + [СН2О]

Окисление СО карбоксидобактериями осуществляется с участием СО-дегидрогеназы. Электроны, освобождающиеся при этом, поступают в электронтранспортную цепь, состав которой аналогичен таковому водородных бактерий.

Карбоксидобактерии приносят существенную пользу, улучшая экологическую ситуацию благодаря своей способности очищать атмосферу от токсичного оксида углерода, который в больших количествах присутствует в выхлопных газах, выбросах многих промышленных предприятий.

Семейство Pseudomonadaceae

Семейство Pseudomonadaceae состоит из четырех основных родов: Pseudomonas, Xanthomonas, Zoogloea, Frateuria, в состав которых входят как сапрофитные, так и патогенные штаммы. Сапрофиты могут быть почвенными и обитающими в пресной или морской воде. Патогенные штаммы включают как фитопатогенных (вызывающих заболевания растений), так и патогенных для человека и животных представителей.

Общие признаки представителей семейства Pseudomonadaceae - это грамотрицательные, аэробные, не образующие спор, в большинстве своем хемоорганотрофные бактерии. Метаболизм дыхательный, никогда не бродильный. Растут при температуре от 4 до 43 °С. По морфологии это прямые или изогнутые палочки, передвигающиеся с помощью полярно расположенных жгутиков.

Важным систематическим признаком является то, что представители семейства Pseudomonadaceae катаболизируют углеводы по пути Энтне- ра - Дудорова с образованием пировиноградной кислоты. Гликолиза и окислительного пентозофосфатного пути у них не обнаружено. Содержание ГЦ-пар в ДНК находится в пределах 58-71 %.

Краткая характеристика родов, входящих в семейство Pseudomo- nadaceae, представлена в табл. 12.

Таблица 12

Дифференциальные характеристики родов сем. Pseudomonadaceae

Характеристики

Pseudomonas

Xanthomonas

Frateuria

Zoogloea

Зависимость в факторах роста

-

+

-

+

Рост при рН 3,6

-

-

+

-

Продукция ксантомонадинов

-

+

-

-

Патогенность для растений

±

+

-

-

Образование хлопьев с древовид

-

-

-

+

ными выростами

 

 

 

 

 

Род Pseudomonas. Впервые псевдомонады были описаны К. Флюгге в 1886 г. и названы им Bacillus fluorescens. В 1894 г. был создан род Pseudomonas. Размеры клеток бактерий 0,5-1 х 1,5-4 мкм. Все представители подвижны. Жгутикование полярное (монополярное, амфитрихиальное, лофотрихиальное).

В большинстве случаев хемоорганотрофы, но встречаются и хемоли- тоавтотрофы. Метаболизм строго дыхательный. Оксидазная реакция положительная. Отдельные представители способны к денитрификации.

Типовой вид - Pseudomonas aeruginosa.

Род Xanthomonas. Отличительными признаками от представителей рода Pseudomonas являются некоторые особенности метаболизма, к числу которых относится способность продуцировать экстрацеллюлярные полисахариды ксантаны, а также желтые внутриклеточные не растворимые в воде пигменты ксантомонадины, которые представляют собой бромированные или метилированные арилполиены.

Оксидазная реакция отрицательная. Нитраты не восстанавливают. Пищевые потребности для роста сложны, бактерии зависят от наличия в среде метионина, глутаминовой и никотиновой кислот.

Все представители рода Xanthomonas патогенны для растений.

Типовой вид - Xanthomonas campestris.

Род Frateuria. Представители, относящиеся к этому роду, имеют вид палочек, встречающихся парами и поодиночке. Выделяют подвижные с полярным жгутикованием и неподвижные формы.

Облигатные аэробы. Оптимальная температура роста 25-30 °С. Растут при рН 3,6. На среде с глюкозой образуют типичный водорастворимый коричневый пигмент. На среде с дрожжевым экстрактом или пептоном формируют желтые, либо оранжевые колонии.

Хемоорганотрофы. Образуют органические кислоты из этанола и большинства других источников углерода. Не нуждаются в факторах роста. Нитраты не восстанавливают.

Представители рода Frateuria выделены из растений рода Lilium (лилия) и рода Rubus (малина, ежевика) в Японии.

Типовой (и единственный) вид - Frateuria aurantia.

Род Zoogloea. Бактерии, относящиеся к этому роду, являются массовыми обитателями активного ила очистных сооружений. Молодые клетки быстро передвигаются при помощи одиночных полярных жгутиков, со временем клетки агрегируют в хлопья, которые свободно плавают или прикрепляются к какой-нибудь поверхности, а также образуют пленки. Клетки погружены в гелеобразный матрикс и образуют зооглеи - структуры с характерной «древовидной» или «пальцевидной» морфологией.

Хемоорганотрофы, окисляют многие углеводы, аминокислоты. Восстанавливают нитраты. Не пигментированы. Для роста нуждаются в витамине В12. Мезофилы с оптимальной для роста температурой 28-37 °С.

Встречаются как свободноживущие в загрязненных органическими веществами пресных водах и в сточных водах на всех стадиях очистки.

Типовой вид - Zoogloea ramigera.

Типовым родом семейства Pseudomonadaceae является род Pseudomonas как самый многочисленный и уникальный. Интерес исследователей во всем мире к этим бактериям постоянно растет. Бактерии рода Pseudomonas - это и сапрофиты, и патогены. Способны утилизировать в качестве источника углерода и энергии разнообразные природные и неприродные соединения. Они являются продуцентами большого числа биологически активных соединений, таких как пигменты, антибиотики, аминокислоты, полисахариды, токсины, витамины, а также другие органические вещества, используемые в иммунологии, медицине и сельском хозяйстве. Наибольший интерес с практической точки зрения представляют пигменты и антибиотики, синтезируемые этими бактериями.

Пигменты бактерий рода Pseudomonas относятся к различным химическим группам соединений. Способность к синтезу пигментов в значительной степени зависит от условий культивирования клеток-продуцен- тов: состав среды, степень аэрации, температура влияют на этот процесс.

У бактерий рода Pseudomonas наиболее разнообразно представлена группа феназиновых пигментов. Эти пигменты синтезируются по метаболическому пути биосинтеза ароматических аминокислот. Производными феназина являются следующие пигменты: пиоцианин, йодинин, хлорорафин, оксихлорорафин, аэругинозин А, аэругинозин В, феназин-1- карбоновая кислота. Феназиновые пигменты синтезируются многими флуоресцирующими псевдомонадами. Например, разные штаммы бактерий P. aeruginosa продуцируют аэругинозин А, аэругинозин В, оксихлорорафин, хлорорафин и синий пигмент - пиоцианин; P. aureofaciens - феназин-1-карбоновую кислоту; P. iodininum - пурпурный пигмент йо- динин.

В определенных условиях некоторые представители рода Pseudomonas (P. fluorescens, P. putida, P. aeruginosa, P. chlororaphis и др.) синтезируют водорастворимые флуоресцирующие желто-зеленые пигменты, названные пиовердинами. Молекула пиовердина состоит из хинолинового хромофора, связанного с циклическим пептидом, и короткой алифатической цепи. Пиовердины являются железохелатами (сидерофорами) и выполняют специфическую роль в транспорте Fe3+. Синтез пиовердинов происходит при недостатке железа в среде. Появились сообщения, что эти пигменты имеют полезные свойства, так как при обработке семян растений культуральной жидкостью, содержащей флуоресцирующие пигменты, или после поливки ею вегетирующих растений наблюдается существенная прибавка урожая. Стимулирующий и защитный эффект флуоресцирующих пигментов можно объяснить следующим: пигменты связывают железо почвы, в результате чего находящиеся в ризосфере растения фитопатогенные микроорганизмы не размножаются, так как их рост ограничивается недостатком железа. В следствие этого растение развивается более здоровым и лучше плодоносит.

Третья группа пигментов, продуцируемых бактериями рода Pseudomonas, - каротиноидные пигменты меланины. Эти пигменты не растворимы в воде и остаются связанными с клетками, придавая колониям желтый или оранжевый цвет. Каротиноидные пигменты продуцируют представители видов P. mendocina, P. flava, P. palleronii, P. radiora, P. aeruginosa, P. rodos и др.

Большинство бактерий рода Pseudomonas синтезируют вещества антибиотической природы. Эти вещества составляют обширную группу различных соединений, объединяемых общей функцией. Количество антибиотиков, синтезируемых бактериями рода Pseudomonas, достигло более 50. По этому свойству псевдомонады почти достигли уровня бацилл и уступают лишь актиномицетам. По химической природе антибиотики псевдомонад принадлежат к феназинам, пирролам, производным индола и являются промежуточными или конечными продуктами метаболизма ароматических соединений.

Антибиотики, образуемые бактериями Pseudomonas., делятся на следующие группы.

Антибиотики ациклического строения, например:

псевдомоновая кислота (мупироцин) - действует на грамположи- тельные и грамотрицательные бактерии, дрожжи. Обладает гемолитическими свойствами. Продуцент - P. fluorescens;

тиоформин - высокоактивен против грамположительных и гра- мотрицательных бактерий, клеток раковых опухолей, однако in vivo токсичен. Продуцент - P. fluorescens.

Антибиотики циклического строения, например:

салициловая кислота. Продуценты - P. fluorescens, P. aeruginosa, P. denitrificans;

флюороглюцины - высокоактивны против грамположительных бактерий. Продуцент - P. aurantiaca.

Антибиотики гетероциклического строения, например:

феназиновые антибиотики - действуют на грамположительные и грамотрицательные бактерии. Продуценты - P. chlororaphis, P. aureofa- ciens, P. fluorescens.

Антибиотики-производные пиррола, например:

пирролнитрин - активен против большинства плесневых грибов и дрожжей. На его основе приготовлен медицинский препарат, используемый в медицине для лечения различных дерматомикозов. Продуценты - P. aureofaciens, P. fluorescens, P. azotoformans и др.

Антибиотики-аминогликозиды, например:

сорбистины - угнетают рост грамположительных и грамотрица- тельных бактерий. Продуценты - P. fluorescens, P. sorbistini.

Антибиотики-пептиды, например:

сирингомицин. Продуцент - P. syringae;

микроцины. Продуцент - P. aeruginosa.

(З-Лактамные антибиотики, например:

табтоксины - высокотоксичны для бактерий, водорослей, высших растений и млекопитающих. Продуцент - P. tabaci;

сульфазецин - высокоактивен в отношении грамотрицательных бактерий, на грамположительные бактерии действует слабо. Продуцент - P. acidophila.

Бактерии рода Pseudomonas обладают редкой способностью использовать широкий круг источников питания - до 150 наименований природных и синтетических соединений. Уникальной особенностью псевдомонад является способность использовать в качестве источника углерода и энергии ароматические соединения, такие, как фенол, камфора,
салицилат, нафталин, толуол и другие, не утилизируемые большинством микроорганизмов. Первым этапом катаболизма ароматических соединений является образование катехола:

HOOC

'OH

Затем происходит разрыв ароматического кольца в орто- или метаположении:

 

Подпись: HOOCПодпись: COOH COOHHOOC ордао-Расщепление

 

 

 

'OH

 

 

 

 

 

 

 

 

 

 

 

 

 

HOOC.

 

 

 

 

 

 

HOOC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

OH

 

 

 

 

 

 

 

 

 

CHO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


жедаа-Расщепление

Показано, что бактерии P. putida расщепляют ароматические соединения по орто-пути. Некоторые другие бактерии рода Pseudomonas, такие, как P. testosteroni, P. fluorescens и P. acidovorans, расщепляют ароматические соединения по мета-пути.

Бактерии рода Pseudomonas могут деградировать большую группу токсических соединений (гербициды, инсектициды, пестициды), содержащих в своем составе атомы хлора, фтора, ртути, брома. Некоторые представители псевдомонад способны расщеплять поверхностно-активные вещества (сульфанол, алкилсульфонат, додецилсульфат натрия и др.), синтетические полимеры (капролактам, тринитротолуол, n-нитроанилин и др.). Установлено, что генетические детерминанты утилизации неприродных углеродсодержащих соединений находятся в плазмидах, которые относятся к плазмидам биодеградации, или D-плазмидам.

Таким образом, можно сделать вывод, что большинство бактерий рода Pseudomonas - типичные хемогетеротрофы. Вместе с тем в составе рода Pseudomonas имеюся виды, способные к хемолитотрофному росту за счет окисления молекулярного водорода. Это бактерии видов P. faci- lis, P. saccharophila, P. flava, P. palleronii и др.

Некоторые виды бактерий рода Pseudomonas способны к денитрификации, к их числу относятся P. aeruginosa, P. denitrificans, P. fluorescens, P. mendocina и др. В процессе денитрификации нитраты и нитриты восстанавливаются до N2O, NO или N2.

В последние годы получены данные о том, что некоторые бактерии рода Pseudomonas, обитающие в ризосфере различных растений, способны фиксировать молекулярный азот. Азотфиксирующие свойства выявлены у штаммов P. saccharophila, P. delafieldii, P. aurantiaca и др. Имеются также данные, свидетельствующие в пользу того, что бактерии одних и тех же видов микроорганизмов могут осуществлять два диаметрально противоположных процесса - азотфиксацию и денитрификацию.

Бактерии рода Pseudomonas широко распространены в природе: почве; морских и пресноводных водоемах; илах; сточных водах; пластовых водах нефтяных месторождений; почвах, загрязненных нефтью; почве около горячих источников; филосфере и ризосфере растений; в рудных месторождениях и т. д. Широкая распространенность псевдомонад обеспечивается их способностью развиваться в самых разных условиях в природе, используя различные соединения углерода и азота в энергетическом и конструктивном обмене.

Среди псевдомонад много сапрофитов (P. fluorescens, P. putida и др.), но есть виды, патогенные для человека и животных (P. aeruginosa) и для растений (P. syringae, P. cichorii, P. glycinea и др.).

Метаболическое разнообразие бактерий рода Pseudomonas позволяет широко использовать их в народном хозяйстве:

для борьбы с загрязнением окружающей среды, утилизацией ксенобиотиков (выступают как детоксиканты);

производства микробного белка при выращивании бактерий на дешевых субстратах (спирты, ароматические соединения, углеводороды и др.);

производства уникальных антибиотиков и изыскания новых антимикробных, противоопухолевых и противовирусных соединений;

извлечения остаточной нефти из скважин и месторождений;

производства аминокислот и витаминов на дешевых субстратах;

защиты сельскохозяйственных растений от фитопатогенов. Бактерии-антагонисты из рода Pseudomonas используются в качестве средства биологической борьбы с заболеваниями растений бактериальной и грибной этиологии.

Семейство Enterobacteriaceae

Семейство Enterobacteriaceae объединяет бактерии, которым присущи следующие признаки:

отрицательная окраска по Граму;

 прямые палочки (0,3-1,8 мкм), подвижные за счет перитрихи- альных жгутиков или неподвижные, не образующие спор;

оксидазоотрицательные и каталазоположительные (за исключением Shigella dysentheriae);

катаболизм углеводов с образованием кислоты и газа или только кислоты;

факультативные анаэробы, обладающие метаболизмом дыхательного и бродильного типа;

восстанавливают нитраты в нитриты (кроме ряда видов родов Er- winia, Yersinia и Pantoea);

хемоорганогетеротрофы, хорошо растущие на обычных питательных средах;

не содержат цитохромоксидазу;

некислотоустойчивые;

большинство видов хорошо растет при температуре 37 °С, однако представители некоторых видов лучше осуществляют жизнедеятельность при 25-30 °С.

Семейство получило свое название Enterobacteriaceae, так как некоторые типичные его представители являются постоянными обитателями толстого кишечника млекопитающих и человека (от греч. entero - кишечник).

Семейство Enterobacteriaceae насчитывает более 30 родов и более 100 видов. Наибольший интерес для человека представляют роды Escherichia, Shigella, Salmonella, Citrobacter, Klebsiella, Enterobacter, Er- winia, Pantoea, Serratia, Hafnia, Proteus, Yersinia, Edwardsiella, Providen- cia, Morganella.

Энтеробактерии распространены повсеместно: их можно обнаружить в почве, воде, на фруктах, овощах, зерне, цветковых растениях и деревьях, в организмах животных (от червей и насекомых до млекопитающих) и человека. Входящие в это семейство микроорганизмы весьма разнообразны по особенностям экологии, кругу хозяев, а также патогенности для человека, животных, насекомых и растений.

Энтеробактерии с их типичным представителем E. coli, часто рассматривающимся как прототип бактерий вообще, являются объектами интенсивного исследования по следующим причинам.

Имеют медицинское и экономическое значение.

Ряд видов энтеробактерий вызывают желудочно-кишечные заболевания, включая брюшной тиф и бактериальную дизентерию. Кроме того, большинство видов энтеробактерий могут быть возбудителями разнообразных внекишечных инфекций, таких как бактериемия, менингит, инфекции мочевыводящих и дыхательных путей, а также раневые инфекции. Бактерии семейства Enterobacteriaceae являются причиной 50 % случаев внутрибольничных инфекций; наиболее часто их вызывает E.coli, представители родов Klebsiella, Enterobacter, Proteus, Providencia и вида Serratia marcescens.

Фитопатогенные виды бактерий рода Erwinia наносят значительный ущерб продукции сельского хозяйства, вызывая заболевания картофеля, капусты, огурцов, арбузов и др. Установлено, что в отдельных случаях при хранении картофеля 20-50 % урожая гибнет от поражения «мягкими» гнилями, возбудителями которых являются данные микроорганизмы. Они также вызывают заболевания вегетирующих растений, снижая урожайность сельскохозяйственных культур. Однако помимо вреда, который наносят бактерии рода Erwinia, они могут выступать в качестве продуцентов пектолитических ферментов, которые могут найти широкое применение в пищевой промышленности для осветления фруктовых и овощных соков, в промышленной мочке льна и др.

Быстро растут и размножаются. Например, время генерации бактерий E. coli в оптимальных условиях составляет 20 мин.

Не требуют для роста сложных сред.

Удобны для проведения генетических манипуляций, для них разработаны и осуществлены все способы генетического обмена.

Род Escherichia получил свое название в честь немецкого ученого Т. Эшериха, который в 1885 г. выделил из кишечника детей бактерии E. coli. Это типовой род семейства Enterobacteriaceae. Основные признаки рода: прямые палочки (1,1-1,5 х 2,0-6,0 мкм), перитрихи (или неподвижные), для многих представителей характерно образование капсул или микрокапсул, оптимальная температура для роста 37 °С, ферментируют лактозу с образованием кислоты и газа (или не сбраживают лактозу), цитратотрицательные, реакция Фогеса - Проскауэра (определяется продукция ацетоина - промежуточного соединения при синтезе 2,3-бу- тан-диола) отрицательная, проба с метиловым красным (определяется количество кислоты, образуемой из углевода) положительная, не образуют H2S, не гидролизуют мочевину, не обладают липазной активностью.

Бактерии рода Escherichia входят в состав нормальной микрофлоры толстого кишечника теплокровных животных, рыб и пресмыкающихся, а представители вида E. blattae обитают в кишечнике тараканов. Вместе с содержимым кишечника они могут попадать во внешнюю среду.

Род Escherichia представлен семью видами. Типовой вид - Escherichia coli (кишечная палочка).

Бактерии E. coli - факультативные анаэробы, хорошо растут на обычных питательных средах. Температурный оптимум для роста 37 °С, но способны к росту в диапазоне температур от 10 до 45 °С, с оптимальным значением рН 7,2-7,5. Используют ацетат в качестве единственного источника углерода. Образуют индол из триптофана. Ферментируют лактозу с образованием кислоты и газа. На дифференциальнодиагностических средах, содержащих лактозу, формируют окрашенные колонии (на среде Эндо - темно-малиновые с металлическим блеском; на среде Левина - темно-синие с металлическим блеском; на среде ЕМВ - фиолетовые с металлическим блеском) (рис. 95). Не нуждаются в дополнительных факторах роста.

Рис. 95 . Рост бактерий E. coli на среде ЕМВ

 

Бактерии E. coli используются в международных стандартах как санитарный показатель фекального загрязнения питьевой воды и пищевых продуктов. Основанием для этого послужил тот факт, что в фекалиях вместе с кишечной палочкой могут присутствовать и патогенные микроорганизмы, поэтому чтобы не применять специальных трудоемких методов для их выявления, пользуются показателем общего загрязнения. Таким индикатором и являются бактерии E. coli - постоянные обитатели толстого кишечника, обнаружение которых указывает на то, что среда загрязнена содержимым кишечника и кишечными бактериями, среди которых могут быть и патогенные формы. Санитарными показателями питьевой воды и пищевых продуктов служат коли-титр и коли-индекс.

Коли-титром называется наименьший объем воды в миллилитрах, содержащий одну клетку кишечной палочки. Для водопроводной воды ко- ли-титр должен быть не менее 333 мл. Коли-индекс - количество клеток бактерий E. coli в 1 л. Для водопроводной воды коли-индекс состовляет не более 2-3 кл/л.

Бактерии E. coli, являясь условно-патогенными микроорганизмами, в определенных условиях могут вызывать различные заболевания: кишечные инфекции (диареи), поражения мочевыводящих путей, бактериемии, менингиты, гнойные воспаления и др. Факторами вирулентности патогенных бактерий E. coli являются ворсинки, или фимбриальные факторы, которые облегчают адгезию к эпителию и способствуют колонизации нижних отделов тонкого кишечника, термолабильный и термостабильный энтеротоксины (стимулируют гиперсекрецию клетками кишечника жидкости, содержащей ионы Na+, K+, Cl-, бикарбонаты, что приводит к нарушению водно-солевого обмена и развитию диареи), эндотоксины (являются причиной эндотоксикоза).

Род Shigella назван в честь К. Шига, впервые описавшего его типовой вид Shigella dysenteriae, который является возбудителем дизентерии. Позже были обнаружены и другие возбудители дизентерии: Shigella flex- neri (выделены С. Флекснером), Shigella sonnei (выделены К. Зонне), Shigella boydii (выделены Дж. Бойдом).

Бактерии рода Shigella представляют собой короткие неподвижные палочки, не образующие спор и капсул. Шигеллы не образуют H2S; глюкозу и другие углеводы ферментируют с образованием кислоты без газа; как правило, не ферментируют лактозу (за исключением шигелл Зонне), реакция Фогеса - Проскауэра отрицательная. Температурный оптимум для роста шигелл 37 °С, выше 45 °С они не растут. Оптимальное значение рН для роста 6,7-7,2.

Международная классификация шигелл построена с учетом биохимических признаков и особенностей антигенной структуры. Чтобы отличить от других шигелл бактерии вида S. sonnei, часто достаточно провести следующие биохимические тесты (табл. 13).

Однако различить виды S. dysentheriae, S. flexneri и S. boydii только по биохимическим признакам невозможно. Для надежной идентификации видов шигелл необходимо типирование по соматическим антигенам. У шигелл обнаружены различные по специфичности соматические антигены (О-антигены): общие для семейства Enterobacteriaceae, родовые, видовые, групповые и типоспецифические. В классификации шигелл учитываются в основном групповые и типоспецифические О-антигены. В соответствии с этими признаками род Shigella включает 44 серотипа.

Таблица 13

Биохимические отличия Shigella sonnei от других шигелл

Тест

S. sonnei

Другие

шигеллы

Образование индола

-

d

Орнитиндекарбоксилаза

+

-

Образование кислоты из раффинозы

-

d

Образование кислоты из Ь-рамнозы

+

-

о-Нитрофенил-Р-Б-галактопиранозид

+

-

П р и м е ч а н и е: d - 25-75 % штаммов положительные.

 

Большинство штаммов рода Shigella продуцирует специфические бактериоцины, что наряду с чувствительностью к известным бактерио- цинам учитывается при идентификации до вида. Для этого имеются наборы типовых и индикаторных штаммов шигелл, а также набор эталонных бактериоциногенных штаммов.

Бактериальная дизентерия распространена повсеместно. Единственным природным резервуаром шигелл является человек. Источник инфекции - больные люди и бактерионосители. Никакие животные в природе дизентерией не болеют. Основные способы передачи шигелл - фекально-оральный и контактно-бытовой (через воду, пищевые продукты). Определенную роль играют насекомые (мухи, тараканы и др.), переносящие возбудителей на пищевые продукты.

Факторами вирулентности бактерий рода Shigella можно считать наличие ворсинок; специфические свойства белков и липополисахаридов наружной мембраны; образование ферментов, разрушающих слизь, - нейраминидазы, гиалуронидазы; синтез муциназы (обеспечивает адгезию и колонизацию на клетках слизистой оболочки толстого кишечника - фактор инвазивности); продукцию экзотоксинов (цитотоксинов Шига), вызывающих гибель клеток и приток жидкости в очаг поражения; образование эндотоксинов, обеспечивающих интоксикацию организма.

Род Salmonella назван в честь ученого Д. Сальмона, который выделил одного из возбудителей пищевой токсикоинфекции, известного в настоящее время как Salmonella choleraesuis.

Ключевые признаки рода Salmonella следующие: короткие прямые палочки с закругленными концами (0,7-1,5 х 2-5мкм), в большинстве случаев подвижны (перитрихи), спор и капсул не имеют, образуют при ферментации глюкозы (и ряда других углеводов) кислоту и газ (за исключением S. typhi и некоторых других серотипов), в основном образуют

H2S, дают отрицательную реакцию Фогеса - Проскауэра, не ферментируют лактозу (кроме S. arizonae и S. diarizonae).

Род Salmonella состоит из двух видов - S. bongori и S. choleraesuis. Типовой вид S. choleraesuis объединяет бактерии подвидов: choleraesuis, salamae, arizonae, diarizonae, houtenae и indica.

Сальмонеллы различаются по антигенной структуре. Они имеют различные соматические и жгутиковые антигены. В настоящее сремя количество серотипов сальмонелл достигло более 2500. Большая часть известных серотипов включает в себя подвид choleraesuis. Для удобства дальнейшего изложения материала будем пользоваться исторически сложившейся таксономией бактерий, которая рассматривает серотипы (серовары) как виды (например, S. typhi вместо S. choleraesuis подвид choleraesuis серовар typhi).

Сальмонеллы обладают достаточно высокой устойчивостью к факторам внешней среды и поэтому могут длительно сохраняться в природе. В воде открытых водоемов и питьевой воде они могут выживать 11-120 суток, в морской воде - 15-30, на овощах и фруктах - 5-10 суток, в масле, сыре - до 3 месяцев, в яйцах и замароженном мясе - до 13, в почве - до 9 месяцев, в комнатной пыли - 80-540 суток. Нагревание при температуре 70 °С сальмонеллы выдерживают в течение 30 мин.

Основные заболевания, вызываемые сальмонеллами (сальмонеллезы), можно условно разделить на три группы: брюшной тиф и паратифы, гастроэнтериты (пищевые токсикоинфекции) и септицемии. Брюшной тиф (возбудитель - S. typhi) и паратиф А (возбудитель - S. paratyphi A) - типичные антропонозные инфекции (заболевания, характерные только для человека). Остальные заболевания, вызываемые сальмонеллами, характерны как для человека, так и для животных. Возбудителями паратифа В являются бактерии S. schotmuleri; паратифа С - S. hirschfeldii; гастроэнтеритов - S. enteritidis, S. typhimurium, S. gallinarum, S. pullorum и др.

Источником брюшного тифа и паратифа А является только человек, больной или бактерионоситель. Источником паратифа В и С, кроме человека, могут быть и животные, в том числе птицы. Механизм заражения - фекально-оральный. Наиболее опасными источниками пищевых токсикоинфекций являются животные, страдающие сальмонеллезами. Вспышки токсикоинфекций чаще всего связаны с употреблением мяса, инфицированного сальмонеллами (до 70-75 %). У ослабленных животных сальмонеллы легко проникают из кишечника в кровь, а через нее - в мышцы, обусловливая прижизненное инфицирование мяса. Большую роль в эпидемиологии сальмонеллезов играют водоплавающие птицы и их яйца, а также куры, их яйца и другие птицепродукты. Сальмонеллы могут попасть в яйцо непосредственно во время его развития, но могут легко проникать и через неповрежденную скорлупу. На долю яиц и пти- цепродуктов приходится более 10 %, молока и молочных продуктов - около 10 % и на долю рыбопродуктов - около 3-5 % вспышек сальмонеллезов.

В настоящее время наблюдается рост заболеваемости людей и животных сальмонеллезами. Одной из основных причин этого - инфицирование пищевых продуктов при производстве в результате широкого распространения сальмонелл на объектах внешней среды и на обрабатывающих предприятиях, куда поступают животные, у которых сальмонеллез протекает в скрытой форме. Одной из главных причин широкой циркуляции сальмонелл среди животных является корм, содержащий переработанные побочные продукты животного происхождения и очень часто зараженный сальмонеллами.

Как факторы вирулентности возбудителей брюшного тифа и пара- тифов рассматриваются их способность противостоять фагоцитозу и размножаться в клетках лимфоидной системы, наличие антигена вирулентности (Vi-антиген, состоящий из трех фракций, основная из которых - N-ацетилгалактозаминоуроновая кислота с молекулярной массой 10 МД ), образование эндотоксина.

Факторами вирулентности сальмонелл - возбудителей пищевых ток- сикоинфекций являются факторы адгезии и колонизации на клетках слизистой оболочки кишечника, эндотоксин, термолабильные и термостабильные энтеротоксины, шигаподобные цитотоксины.

Название рода Klebsiella дано в честь немецкого бактериолога

Э.   Клебса, впервые обнаружившего эти бактерии в тканях больных, погибших от пневмонии. Бактерии рода Klebsiella, в отличие от представителей подавляющего большинства родов энтеробактерий, обладают способностью образовывать макрокапсулу. Клетки клебсиелл имеют форму толстых коротких палочек с закругленными концами, размером 0,3—1,0 х

6-6,0 мкм и расположены одиночно, в парах или коротких цепочках. Жгутики отсутствуют, спор не образуют.

Клебсиеллы ферментируют углеводы с образованием кислоты или кислоты и газа, восстанавливают нитраты до нитритов. По образованию индола, пробе с метиловым красным, реакции Фогеса - Проскауэра, а также по способности расти на среде Симмонса с цитратом виды клебси- елл варьируют. Некоторые штаммы бактерий вида K. pneumoniae способны фиксировать молекулярный азот.

Бактерии рода Klebsiella широко распространены в природе: почве, воде, на овощах, фруктах, в фекалиях человека и клиническом материале. Их постоянно обнаруживают на коже и слизистых оболочках человека и животных. Клебсиеллы находят в почвах пустынь, воде антарктических озер, древесине деревьев, стоках текстильной промышленности, сахарном тростнике и др. Такое широкое распространение бактерий рода Klebsiella связывают с наличием полисахаридной капсулы.

В настоящее время род Klebsiella включает четыре вида - K. planti- cola, K. terrigena, K. oxytoca и типовой вид K. pneumoniae, который подразделяется на три подвида: K. pneumoniae subsp. pneumoniae, K. pneumoniae subsp. ozaenae и K. pneumoniae subsp. rhinoscleromatis. Основную роль в паталогии человека играет вид Klebsiella pneumoniae, остальные виды мало изучены и роль их в патологии человека уточняется. Штаммы вида K. pneumoniae известны как возбудители заболеваний дыхательных путей: пневмонии, озены (поражение и атрофия слизистой оболочки носа и его придаточных пазух, сопровождающиеся выделением вязкого зловонного секрета), риносклеромы (поражение не только слизистой оболочки носа, но и трахеи, бронхов, глотки, гортани, при этом в пораженной ткани развиваются специфические гранулемы с последующим склерозированием и развитием хрящевых инфильтратов). Кроме того, клеб- сиеллы вызывают заболевания суставов, мозговых оболочек, позвоночника, глаз, мочеполовых органов, а также желудочно-кишечные заболевания, сепсис и гнойные послеоперационные осложнения. Клебсиеллы - возбудители внутрибольничных инфекций, заболеваний наворожденных. Они также вызывают маститы, сестицемии и пневмонии у крупного рогатого скота, свиней, лошадей и обезьян.

Заражение клебсиеллами возможно как экзогенным, так и эндогенным путем. Наиболее частые пути передачи - пищевой, воздушнокапельный и контактно-бытовой. Факторами передачи чаще всего являются пищевые продукты (особенно мясные и молочные), вода, воздух. В последние годы частота клебсиеллезов возросла, одна из причин этого - повышение патогенности возбудителя в связи со снижением резистентности организма человека. Этому способствует также широкое использование антибиотиков, изменяющих нормальное соотношение микроорганизмов в естественном биоценозе, иммунодепрессантов и т. д.

Основными факторами вирулентности клебсиелл являются К-анти- ген (капсульный антиген), подавляющий фагоцитоз, и эндотоксин. Помимо них, бактерии K. pneumoniae могут продуцировать термолабильный энтеротоксин - белок, по механизму действия подобный токсину эн- теротоксигенной кишечной палочки. Определенный вклад в патогенность клебсиелл вносит их сидерофорная активность, в результате чего связываются ионы Fe2+ и снижается их содержание в тканях. У клебсиелл выявлены хелаторы железа энтеробактин (энтерохелин) и аэробактин. Факторами адгезии клебсиелл к эпителиальным клеткам являются фим- брии и поверхностные белки, синтез которых детерминируется плазмид- ными генами.

Род Yersinia назван в честь французского ученого А. Иерсена, который открыл возбудителя чумы в 1894 г. Бактерии рода Yersinia - прямые палочки, иногда приобретающие сферическую форму, диаметром 0,5-0,8 и длиной 1-3 мкм. Неподвижные при 37 °С, но при температуре ниже 30 °С подвижные за счет перитрихиальных жгутиков; исключение составляют некоторые штаммы бактерий вида Y. ruckeri и вид Y. pestis, представители которого всегда неподвижны. У бактерий рода Yersinia проба с метиловым красным обычно положительная, реакция Фогеса - Проскауэра отрицательная; H2S не образуют. Восстанавливают нитраты.

Иерсинии широко распространены в природе; некоторые из них - паразиты различных животных (особенно грызунов и птиц) и человека; их также выделяют из почвы, воды, молочных и других пищевых продуктов.

Род Yersinia включает 11 видов, три из них патогенны для человека: Y. pestis (типовой вид), Y. pseudotuberculosis и Y. enterocolitica; патогенность остальных видов бактерий пока еще не ясна.

Бактерии Y. pestis - возбудители чумы, болезни, главным образом, диких грызунов. Переносчиками бактерий Y. pestis, распространяющими возбудителей среди диких грызунов, служат блохи, в которых бактерии размножаются, закупоривая пищевод и глотку. При очередном кровосо- сании блохи отрыгивают бактерии и при этом могут передавать возбудителей, если не находят других хозяев, человеку. В результате укуса инфекционных блох у человека развивается типичная бубонная форма чумы и может возникнуть вторичная пневмония. При воздушно-капельной передаче инфекции возможно появление первичной легочной чумы.

Бактерии Y. pestis обладают высокой инвазивностью, агрессивностью и токсигенностью, поэтому вызывают тяжелое заболевание. Факторами вирулентности являются ворсинки адгезии, капсула (угнетает активность макрофагов), «мышиный» токсин (блокирует процесс переноса электронов в митохондриях сердца и печени, поражает тромбоциты и сосуды и нарушает их функции), эндотоксин и другие компоненты клеточной стенки (обладают токсическим и аллергенным действием), фиб- ринолизин, плазмокоагулаза, нейраминидаза, аденилатциклаза, амино- пептидазы, термоиндуцибельные белки наружной мембраны (Уор-бел- ки - подавляют активность фагоцитов) и др. Значительная часть факторов вирулентности бактерий Y. pestis контролируется генами локализованными в рУР-плазмидах.

Бактерии Y. pseudotuberculosis патогенны для многих видов животных (грызуны, олени, домашние животные и птицы). Заболевания человека наблюдаются сравнительно редко. Большая часть случаев зарегистрирована в Европе у подростков; пик заболеваемости - зимние месяцы. Бактерии Y. pseudotuberculosis вызывают лимфаденит, хроническое желудочно-кишечное расстройство и тяжелую септицемию.

Основное поражение, вызываемое бактериями Y. enterocolitica - иер- синиоз, - инфекция, сопровождающаяся диареей, энтеритом, псевдоаппендицитом и (иногда) септицемией или острым артритом. Возбудитель широко распространен в природе, его выделяют от насекомых, моллюсков, ракообразных, птиц, грызунов, собак, кошек, домашних сельскохозяйственных животных (основные хозяева). Бактерии Y. enterocolitica можно также обнаружить в воде многих рек и озер. Инфицирование человека происходит фекально-оральным путем. Подъем заболеваемости отмечают в осенне-зимний сезон. В Европе основной резервуар - свиньи, большинство достоверных случаев заражения связаны с употреблением недостаточно термически обработанной свинины. Большинство случаев, зарегистрированных в Японии, связано с употреблением в пищу рыбы и ракообразных.

Бактерии Y. ruckeri вызывают «болезнь красного рта» у рыб (основной хозяин - радужная форель).

Род Enterobacter объединяет прямые подвижные (за счет перитрихи- альных жгутиков) палочки размерами 1,2-3,0 х 0,6-1,0 мкм. Бактерии вида E. asburiae неподвижны. Клетки бактерий рода Enterobacter имеют полисахаридную капсулу.

Бактерии рода Enterobacter ферментируют глюкозу и некоторые другие углеводы с образованием кислоты и газа. Индол, H2S не образуют. У большинства штаммов реакция Фогеса - Проскауэра положительная. Проба с метиловым красным варьирует. Утилизируют цитрат.

Род насчитывает 13 видов. Типовой вид - E. cloacae. Бактерии рода Enterobacter широко распространены в природе: встречаются в пресной воде, почве, сточных водах, на растениях, овощах, а также в фекалиях человека и животных. Доказана патогенность энтеробактеров для некоторых насекомых (например, саранчи). Вопрос о патогенности энтеробактеров для человека длительное время оставался открытым. Однако в 1970-1980-е годы, установлено, что они редко вызывают самостоятельные инфекции, но часто поражают пациентов, особенно получающих антибиотики широкого спектра, в стационарах. Показано, что энтеробакте- ры вызывают до 10-15 % госпитальных бактериемий. Несколько реже они инфицируют ожоговые и хирургические раны, а также вызывают поражения мочеполовой и дыхательной систем. Установлено, что из шести видов энтеробактеров, выделяемых из организма человека (E. cloacae, E. aerogenes, E. sakazakii, E. gergoviae, E. amnigenus, E. taylorae), поражения наиболее часто вызывают первые два вида. Основные факторы патогенности - наличие микроворсинок, облегчающих колонизацию, и эндотоксина.

Бактерии рода Citrobacter прямые подвижные (перитрихи) палочки размером 2-6 х 1,0 мкм. Род объединяет группу родственных бактерий, названных так благодаря их способности утилизировать цитрат натрия в качестве единственного источника углерода и образовывать тримети- ленгликоль из глицерина. Цитробактеры катаболизируют глюкозу и другие углеводы с образованием кислоты и газа. Дают положительную реакцию с метиловым красным и отрицательную реакцию Фогеса - Про- скауэра. Восстанавливают нитраты. Утилизируют соли органических кислот - мукаты и тартраты.

Род Citrobacter включает три вида: C. amolonaticus, C. diversus и C. freundii (типовой вид).

Цитробактеры выделяют из воды, почвы, фекалий животных и человека. Некоторые виды входят в состав нормальной кишечной микрофлоры. Большинство представителей цитробактеров не патогенны для человека, но некоторые способны вызывать вспышки гастроэнтеритов и пищевых токсикоинфекций. У людей чаще обнаруживают бактерии вида C. freundii. Механизмы передачи возбудителя - фекально-оральный и контактный. Тем не менее, наибольшую значимость приобрели госпитальные поражения желче- и мочевыводящих путей, отиты и остеомиелиты, особенно у ослабленных пациентов и новорожденных, обусловленные горизонтальной передачей через руки медперсонала. Часто наблюдают бактериемии, эндокардиты и поражения дыхательных путей. Кроме того, бактерии вида C. diversus являются частыми возбудителями менингитов и абсцессов центральной нервной системы. Основные факторы патогенности цитробактеров - микроворсинки, поверхностный белок адгезии (факторы инвазивности) и эндотоксин.

Бактерии рода Proteus впервые выделены в 1885 г. из гниющего мяса. В основу названия рода легла способность его представителей менять внешнее проявление роста на плотных средах (в честь сына Посейдона - водяного божества Протея, способного менять свой облик).

Бактерии рода Proteus - прямые подвижные (перитрихи) палочки размерами 1-3 х 0,4-08 мкм, капсул не имеют (рис. 96).

Протеям в наибольшей степени (по сравнению с другими энтеробактериями) свойственен полиморфизм с образованием нитевидных и кокковидных форм. Подвижность более выражена при температуре 2022 °С. Для большинства, штаммов рода Proteus характерен «феномен роения» на плотных питательных средах (образование концентрических колец роста по периферии центральной колонии или однородной пленки на влажной поверхности питательной среды) (рис. 97). «Феномен роения» можно подавить добавлением в питательную среду NaCl, мочевины, карболовой кислоты, солей желчных кислот и др.

Рис. 97. Рост бактерий бактерий Proteus mirabilis на питательной среде

 

Протеи катаболизируют глюкозу и немногие другие углеводы с образованием кислоты и обычно газа. Восстанавливают нитраты, гидролизуют мочевину, расщепляют тирозин, растут на средах с KCN, дезаминируют фенилаланин и триптофан. По образованию индола, реакции Фоге- са - Проскауэра виды различаются. Обычно образуют H2S. Малонат не используют.

Род Proteus включает четыре вида: P. mirabilis, P. myxofaciens, P. pen- neri, P. vulgaris (типовой вид).

Бактерии рода Proteus обитают в кишечнике многих видов позвоночных и беспозвоночных животных (например, P. myxofaciens в кишечнике гусениц шелкопряда непарного), в почве, сточных водах и разлагающихся органических остатках. Патогенны для человека и вызывают инфекции мочевыводящих путей, а также вторичные септические поражения у пациентов с ожогами и после хирургических вмешательств. Факторы патогенности многочисленны, важнейшие из них - способность к «роению», ворсинки, гемолизины, гемагглютинины, ферменты протеазы и уреаза.

Бактерии рода Providencia ранее относили к роду Proteus, но выявленные биохимические отличия (неспособность образовывать H2S, ферментировать глюкозу с образованием газа, инертность к различным углеводам - мальтозе, трегалозе, сахарозе, ксилозе и др.), а также исследования ДНК послужили основанием для выделения бактерий в отдельный род.

Бактерии рода Providencia - прямые подвижные (перитрихи) палочки размерами 0,6-0,8 х 1,5—2,5 мкм.

Температурный оптимум для роста бактерий рода Providencia - 37 °С. Глюкозу и другие углеводы катаболизируют с образованием кислоты. Образуют индол (за исключением P. heimbachae), обычно дают положительную реакцию с метиловым красным и отрицательную Фогеса - Проскауэра. Малонат не используют. Не образуют лизин- и орнитиндекар- боксилазу, а также аргининдегидролазу. Осуществляют окислительное дезаминирование триптофана. Разлагают тирозин, вызывая просветление агаризованной среды, содержащей эту нерастворимую аминокислоту.

Род Providencia состоит из пяти видов: P. alcalifaciens (типовой вид), P. heimbachae, P. rettgeri, P. rustigianii, P. stuartii.

До 25 % изолятов бактерий вида P. stuartii и до 40 % штаммов вида P. rettgeri могут давать «феномен роения». Установлено, что значительно большее число штаммов способно к роению после инкубирования при температуре 30 °С или при снижении плотности агара (1,3 %). Для роения провиденций характерно образование полиморфных структур (в виде деревьев, протуберанцев), но не классических концентрических кругов.

Природный резервуар провиденций - человек (основной) и пингвины. Все виды выделяют из фекалий при диарее, из мочи при инфекциях мочевыводящих путей, из гнойного отделяемого ран, ожоговых поражений, а также из крови. Полагают, что практически все провиденции проявляют патогенность, хотя ее степень достаточно низка.

Бактерии рода Morganella открыл Х. Морган, ранее они входили в род Proteus, однако некоторые биохимические свойства и особенности гомологии ДНК послужили основанием для выделения их в отдельный род. Признаки, отличающие бактерии рода Morganella от родов Proteus и Providencia, приведены в табл. 14. Род Morganella образуют прямые подвижные (перитрихи) палочки размерами 1,0—1,7 х 0,6-0,7 мкм, «феномен роения» не дают.

Таблица 14

Отличительные признаки бактерий группы Proteus — Providencia — Morganella

Тест

Proteus

Providencia

Morganella

Образование И28

+

Кроме P. myxofaciens

-

-

Образование индола

Кроме P. vulgaris

+

+

Феномен истинного роения

+

-

-

Гидролиз желатины

+

-

-

Гидролиз мочевины

+

+

Кроме P. stuartii

+

Липазная активность

+

-

-

Образование кислоты из: маннозы и ксилозы

+

±

±

 

Температурный оптимум для роста бактерий рода Morganella - 37 °С. Глюкозу и другие углеводы катаболизируют с образованием кислоты и обычно газа. Реакция Фогеса - Проскауэра отрицательная. Образуют индол, не образуют лизиндекарбоксилазу и аргининдегидролазу, но синтезируют орнитидекарбоксилазу. Дезаминируют фенилаланин и триптофан (что сближает их с бактериями родов Proteus и Providencia), синтезируют уреазу, H2S не образуют, восстанавливают нитраты, растут на средах с KCN.

Род Morganella состоит из одного вида - M. morganii с подвидами morganii и sibonii.

Бактерии вида M. morganii выделяют из фекалий различных млекопитающих (включая человека) и рептилий, а также из воды. Ассоциированы с желудочно-кишечными заболеваниями у человека, но как возбудители не определены.

Род Hafnia включает один вид - Hafnia alvei. Это прямые подвижные (перитрихи) палочки размерами 2-5 х 0,5-1 мкм (также существуют и неподвижные штаммы).

Температурный оптимум для роста бактерий рода Hafnia составляет 30-37 °С. Глюкозу и некоторые углеводы сбраживают с образованием кислоты и газа. Индол, H2S и уреазу не образуют. Большое число изоля- тов дают положительные реакции с метиловым красным и Фогеса - Про- скауэра при температуре 22 °С. Растут на средах c KCN, гидролизуют эс- кулин. По лизин- и орнитиндекарбоксилазе положительные; по аргинин- дегидролазе отрицательные. Восстанавливают нитраты. Некоторые изо- ляты (до 30 %) продуцируют бактериоцины.

Бактерии рода Hafnia обнаруживают в сточных водах, почве, воде и пищевых продуктах, фекалиях человека, различных животных и птиц. У ослабленных пациентов могут вызывать спорадические оппортунистические инфекции, локализованные обычно в крови, мочевых путях или ранах.

Название рода Serratia связывают с именем лоцмана Серафино Сор- рати. Род образуют прямые подвижные (перитрихи) палочки размерами

9-2,0 х 0,5-0,8 мкм, отдельные штаммы имеют капсулу.

Температурный оптимум для роста серраций составляет 25-30 °С. Глюкозу и другие углеводы ферментируют с образованием кислоты и часто газа. Образуют индол из триптофана (исключая некоторые штаммы вида S. adorifera), дают положительную реакцию Фогеса - Проскау- эра (исключая представителей вида S. fonticola). Образуют лизин- и ор- нитиндекарбоксилазу, но не синтезируют аргининдегидролазу. Не выделяют H2S, не утилизируют малонат. Восстанавливают нитраты.

Род Serratia состоит из 11 видов. Типовой вид - Serratia marcescens. Бактерии этого вида называют «чудесной палочкой» или «палочкой чудесной крови» из-за ярко-красного пигмента продигиозина, который они синтезируют (рис. 98).

Рис. 98. Рост бактерий Serratia marcescens на питательной среде

 

Бактерии рода Serratia распространены повсеместно в окружающей среде, их выделяют из почвы, воды, воздуха, с растений, а также из испражнений насекомых и грызунов. Серрации, особенно S. marcescens, ранее считали непатогенными. Однако в 1960-е годы была установлена их способность вызывать бактериемии у пациентов стационаров и наркоманов. Позднее выяснилось, что у взрослых людей бактерии чаще колонизируют мочевыводящие и воздухоносные пути, а у детей - желудочно-кишечный тракт. Бактерии вида S. marcescens вызывают до 10 % случаев госпитальных бактериемий и пневмоний, 5 % инфекций мочевыводящих путей, хирургических ран и гнойничковых поражений кожи. Важный момент - способность данных бактерий к горизонтальной передаче через руки медицинского персонала. Наиболее часто серрации проникают в организм через постоянные катетеры, а также через препараты и растворы для внутривенных вливаний. У наркоманов, вводящих препараты внутривенно, часто наблюдают септические артриты, эндокардиты и остеомиелиты. Серрации также вызывают мастит у коров и другие инфекции у животных.

Факторы патогенности бактерий рода Serratia изучены плохо. Ими являются фимбрии, гемолизины (присутствуют у штаммов, колонизирующих почечную ткань), внеклеточные протеазы (вызывают появление кровоизлияний на коже и слизистых оболочках, поражения глаз), термолабильный цитотоксин. Определенный вклад в патогенез вносит сидеро- форная система (представлена энтеробактином и реже - аэробактином), обусловливающая поглощение ионов Fe2+ из крови и тканей.

Род Edwardsiella объединяет мелкие подвижные (перитрихи) палочки размерами 1 х 2-3 мкм. Температурный оптимум - 37 °С, исключая бактерии вида E. ictaluri, теряющие подвижность при 37 °С (подвижны при 25 °С). По сравнению с другими энтеробактериями, эдвардсиеллы проявляют большую инертность к углеводам, но ферментируют глюкозу, ара- бинозу, маннит, трегалозу, мальтозу и маннозу с образованием кислоты и газа. Реакция Фогеса - Проскауэра отрицательная. Восстанавливают нитраты, проявляют лизин- и орнитиндекарбоксилирующую активность.

Род Edwardsiella включает три вида: E. hoshinae, E. ictaluri, E. tarda. Типовой вид - E. tarda.

Эдвардсиеллы имеют ограниченное распространение в природе и сравнительно небольшую группу хозяев. Чаще они встречаются в кишечнике у пойкилотермных животных и в их среде обитания, особенно в пресной воде, но обнаружены также и у гомойотермных животных и человека. Патогенны для угрей, зубаток и других животных. Большая часть поражений у человека обусловлена контактами с пресной и соленой водой, а также с животными, обитающими в этих водоемах либо использующими их в качестве водопоя. Патогенными для человека являются лишь бактерии вида E. tarda. Их естественным резервуаром могут быть различные моллюски, морские ежи, рыбы, рептилии, птицы и млекопитающие (включая коров, свиней, собак, обезьян, леопардов и т. д.). У человека бактерии E. tarda способны вызывать гастроэнтериты, бактериемии, раневые инфекции и реже - перитониты, поражения желче- и мочевыводящих путей.

Основными факторами патогенности бактерий E. tarda являются инвазивные свойства, в-гемолизин и термостабильный энтеротоксин (продуцируется только некоторыми штаммами и обусловливает развитие диарейных синдромов).

Род Erwinia назван в честь американского фитопатолога Эрвина Смита, сыгравшего выдающуюся роль в создании учения о бактериозах.

Бактерии рода Erwinia - прямые палочки размерами 0,5-1,0 х 13 мкм, одиночные, в парах и иногда в коротких цепочках. Подвижные за счет перитрихиальных жгутиков (за исключением E. stewartii).

Оптимальная температура для роста бактерии рода Erwinia составляет 27-30 °С. Катаболизируют глюкозу и другие углеводы с образованием кислоты; газ большинство видов не образуют. Реакция Фогеса - Прос- кауэра положительная. По лизин- и орнитиндекарбоксилазе, а также ар- гининдегидролазе отрицательные. Нитраты большинство видов не восстанавливают. Как источники углорода и энергии используют ацетат, глюконат, малат, сукцинат и фумарат, но не бензоат, оксалат или пропионат.

Род Erwinia состоит из 17 видов. Типовой вид - Erwinia amylovora (возбудитель бактериального ожога плодовых). Бактерии этого вида нуждаются для роста в никотиновой кислоте.

Представители рода Erwinia являются паразитами, сапрофитами или составной частью эпифитной микрофлоры растений. Фитопатогенные бактерии этого рода могут вызывать некрозы, ожоги и увядания, а также типичные «мокрые» или «мягкие» гнили, которые относятся к паренхиматозным, сосудистым и гиперплазическим заболеваниям. Например, бактерии вида E. ananas вызывают гниль плодов ананасов; E. carotovo- ra - «мягкую» и «мокрую» гниль запасных тканей у большого числа растений, а также «черную ножку» у вегетирующих растений картофеля; E. chrysanthemi - сосудистый вильт и некрозы различных растений, в том числе хризантем; E. cypripedii - коричневую гниль орхидей; E. rhaponti- ci - гниль ревеня и гиацинтов, порчу зерна пшеницы; E. nigrifluens - некрозы грецкого ореха; E. salicis - сосудистый вилт ив; E. quercina - ожог листьев дубовых; E. maelotivora - опадание листьев малотуса японского (сем. Молочайные); E. tracheiphila - сосудистое увядание тыквенных; E. stewartii - сосудистый вилт кукурузы; E. rubrifaciens - некрозы флоэмы грецкого ореха; E. uredovora - уничтожает плодовые тела ржавчинных грибов.

Факторами патогенности фитопатогенных бактерий рода Erwinia являются пектолитические, целюлолитические ферменты, экзотоксины и слизистые вещества полисахаридной природы.

Род Pantoea - самый новый род семейства Enterobacteriaceae. Его образуют бактерии, ранее относящиеся к видам Enterobacter agglome- rans, Erwinia herbicola, Erwinia milletiae.

Бактерии рода Pantoea - прямые палочки размерами 0,5-1,0 х 13 мкм. Подвижные за счет перитрихиальных жгутиков. Большинство образуют желтый внутриклеточный нерастворимый в воде пигмент.

Оптимальная температура для роста бактерий рода Pantoea - 30 °С. Катаболизируют глюкозу и другие углеводы с образованием кислоты, но не газа. Реакция Фогеса - Проскауэра положительная. H2S не образуют. Не синтезируют лизиндекарбоксилазу. Восстанавливают нитраты.

Род Pantoea состоит из двух видов: P. agglomerans (типовой вид; ранее - Enterobacter agglomerans, Erwinia herbicola, Erwinia milletiae) и P. dispersa.

Бактерии рода Pantoea выделены с поверхности растений, семян, из почвы и воды, а также из отделяемого ран, конъюнктивы, абсцессов, крови и дыхательных путей человека и животных. Патогенные свойства изучены плохо.

В заключение следует отметить, что энтеробактерии, наряду с псевдомонадами, рассматриваются как наиболее типичные представители протеобактерий.

Спирохеты

Спирохеты - это грамотрицательные спирально завитые одноклеточные бактерии с одним или большим числом полных витков спирали (рис. 99).

Могут встречаться в цепочках, объединенных внешней оболочкой. Клеточная стенка спирохет не ригидная, а чрезвычайно гибкая. В сравнении с длиной толщина клетки мала и поэтому спирохеты проходят через мелкопористые фильтры (диаметр пор 0,2-0,45 мкм), задерживающие большинство бактерий. Используя фильтрование, можно получать накопительные культуры спирохет.

 

Клетки спирохет состоят из спирально извитого протоплазматиче- ского цилиндра, обвитого нитями, которые по отдельности называются аксиальными или осевыми фибриллами, а в совокупности - аксости- лем. Протоплазматический цилиндр благодаря пептидогликану имеет постоянную спиралевидную форму, образуя первичные завитки. Их число, тип, шаг, высота, угол наклона варьируют у разных видов и играют важную систематическую роль. Вторичные завитки у спирохет образуются в результате изгиба всего тела. Каждая аксиальная фибрилла одним концом прикреплена к протоплазматическому цилиндру, другой ее конец свободен. Протоплазматический цилиндр и аксостиль снаружи окружены клеточной стенкой. Аксиальные фибриллы тянутся до полюса клетки, противоположного тому, к которому они прикреплены, и перекрывают друг друга. Неприкрепленные концы аксиальных фибрилл могут выходить за пределы клетки, создавая впечатление наружных полярных жгутиков. С помощью фибрилл спирохеты передвигаются.

Размножаются спирохеты поперечным делением. Эндоспор не образуют; аэробы, факультативные анаэробы или анаэробы; хемоорганогете- ротрофы.

Среди спирохет встречаются свободноживущие аэробные водные виды, анаэробные виды, представители нормальной микрофлоры животных и паразитические виды. Их обнаруживают в кишечнике млекопитающих, на поверхности жгутиковых животных, в рубце жвачных животных, в кристаллическом стебельке моллюсков, в кишечнике термитов, переваривающих древесину, тараканов и др.

Порядок Spirochaetales включает два семейства: Spirohaetaceae и Leptospiraceae. Семейство Spirohaetaceae содержит семь родов: Spiro- chaeta, Cristispira, Treponema, Borrelia, Brachyspira, Leptonema, Serpulina. Для человека патогенны только боррелии и трепонемы.

Представители рода Spirochaeta - непаразитические, свободножи- вущие бактерии. Встречаются в иле, содержащем сероводород, в сточных и загрязненных водах.

Бактерии рода Cristispira широко распространены у морских и пресноводных видов двустворчатых и других моллюсков, обычно находятся в кристаллическом стебельке или в жидкости пищеварительного тракта.

Бактерии рода Treponema встречаются в полости рта, пищеварительном тракте и половых органах человека и животных. Некоторые виды патогенны, в частности Treponema pallidum subsp. pallidum - возбудитель сифилиса, Treponema pallidum subsp. pertenue - возбудитель тропической болезни фрамбезии (тропическая гранулема, невенерический сифилис).

К роду Borrelia относятся анаэробные спирохеты, паразиты различных членистоногих, а также возбудители болезней человека и других позвоночных. Например, Borrelia recurrentis - возбудитель возвратного тифа или возвратной лихорадки у человека. Переносчиками этих бактерий являются вши и клещи.

В семейство Leptospiraceae включен один род Leptospira. К нему относятся самые мелкие аэробные спирохеты. Некоторые штаммы паразитируют у позвоночных животных и могут быть патогенными для них, другие - свободноживущие. К свободноживущим относится Leptospira biflexa - обитает в пресной воде, растет на обычных питательных средах. Из патогенных Leptospira canicola - возбудитель инфекционной желтухи. Эти бактерии попадают в организм с водой и пищей, проникают в кровь, почки и печень и нарушают функцию этих органов, что приводит к кровоизлияниям и желтухе.

Риккетсии и хламидии

Риккетсии получили свое название в честь американского исследователя Х. Риккетса, впервые описавшего возбудителя болезни Ricket-tsia rickettsii, известной как пятнистая лихорадка Скалистых гор, и погибшего при его исследовании. Риккетсии относится к семейству Rickettsia- ceae. По своим размерам риккетсии сравнимы с некоторыми вирусами, но от них отличаются тем, что содержат в клетке как ДНК, так и РНК. В клетке риккетсий имеются рибосомы и ферменты, принимающие участие в метаболизме. Кроме того, она окружена клеточной стенкой, в состав которой входит муреин. Глюкозу риккетсии не используют, способны усваивать некоторые соединения, главным из которых является глутамат, который окисляется через образование дикарбоновых кислот. Способны синтезировать АТФ, их дыхательная цепь во многих отношениях сходна с дыхательной цепью других прокариот. Риккетсии не могут синтезировать НАД и в этом отношении зависимы от хозяина, обеспечивающего их им.

Большинство видов риккетсий - палочковидные, кокковидные и часто плеоморфные микроорганизмы с типичными грамотрицательными- бактериальными клеточными стенками. Эндоспор не образуют. Размножаются бинарным делением только внутри живых клеток хозяина. Их можно культивировать в куриных эмбрионах или культурах клеток позвоночных животных. Некоторые представители могут быть выращены на умеренно сложных бактериологических средах, содержащих кровь.

Все виды риккетсий - облигатные паразиты. Природными носителями риккетсий являются членистоногие (клещи, блохи, вши), в которых эти микроорганизмы обитают, по-видимому, как безвредные паразиты. Попав в организм других хозяев-животных или человека (при укусе насекомого, расчесывании кожи или с вдыхаемым воздухом), риккетсии могут вызывать тяжелые патологические явления.

Заболевания, вызываемые риккетсиями, носят называются риккет- сиозами. Важное значение в проявлении патогенных свойств риккетсий имеет способность образовывать токсин, который тесно связан с их клеткой, и в чистом виде его трудно получить. От экзотоксинов он отличается неотделимостью от микробных клеток и чрезвычайной неустойчивостью. В то же время он не похож на эндотоксины, так как термолабилен и инактивируется формалином.

Самые известные возбудители риккетсикозов принадлежат к бактериям группы сыпного тифа. В нее входят представители двух основных видов риккетсий: Rickettsia prowazekii (риккетсии Провачека) - возбудитель эпидемического сыпного тифа, и Rickettsia typhi - возбудитель эндемического, или крысиного, тифа.

Источником эпидемического сыпного тифа является больной человек, переносчиком возбудителя - платяная вошь. Насосавшись крови сыпнотифозного больного, платяная вошь на третьи-десятые, чаще четвертые-пятые сутки становится заразной. Риккетсии развиваются при температуре 30 °С в кишечнике вшей. Вместе с испражнениями попадают на кожу, белье и т. д. Заражение сыпным тифом происходит не через укус вшей, а при втирании риккетсий, которые выделяются с испражнениями или раздавливании вшей и проникают в ссадины, царапины кожи и повреждения слизистых оболочек.

Сыпной тиф относится к кровяным инфекциям. Возбудитель болезни в период заболевания находится в крови, в лейкоцитах, в эндотелии сосудов кожи, мозга и других органов.

Основным источником возбудителя крысиного сыпного тифа в природе являются крысы и мыши, которые инфицируются друг от друга посредством укусов блох и вшей, люди же заражаются крысиным тифом от грызунов, т. е. это зооносная инфекция.

Заболеваемость крысиным тифом среди людей обычно носит эндемический и спорадический характер. Болезнь характеризуется сезонностью, наибольшее количество заболеваний приходится на август-ноябрь.

Вторая группа возбудителей риккетсиозов - возбудители клещевой пятнистой лихорадки. В эту группу входят следующие виды: Rickettsia rickettsii (возбудитель пятнистой лихорадки Скалистых гор), Rickettsia conorii (возбудитель марсельской, или средиземноморской, лихорадки), Rickettsia sibirica (возбудитель клещевого сыпного тифа Северной Азии), Rickettsia australis (североавстралийский клещевой сыпной тиф), Rickettsia acari (возбудитель осповидного, или везикулезного, риккетсиоза), Rickettsia tsutsugamushi (возбудитель японской речной лихорадки цуцу- гамуши) и другие. Природными носителями этих возбудителей являются клещи.

Хламидии относятся к семейству Chlamydiaceae, которое включает один род Chlamydia. Это неподвижные кокковидные грамотрицательные бактерии. Размножаются только внутри связанных с мембраной вакуолей в цитоплазме клеток человека, млекопитающих и птиц.

Клеточные стенки хламидий сходны по строению со стенками гра- мотрицательных бактерий, но не содержат мурамовую кислоту или содержат ее в следовых количествах. Хламидии не имеют цитохромов, не способны окислять глюкозу и синтезировать свои собственные высокоэнергетические соединения, такие как АТФ. Поэтому они являются «энергетическими паразитами» и не способны размножаться вне живой клетки.

Жизненный цикл хламидий внутри эукариотических клеток сложен, включает образование трех основных форм и обычно завершается в течение 40-72 ч. Основные его стадии следующие:

образование элементарных телец - мелких (0,2-0,5 мкм) электронно-плотных шаровидных структур, имеющих компактный нуклеоид и ригидную клеточную стенку;

образование инициальных, или ретикулярные, телец - больших (в диаметре 0,8-1,5 мкм) сферических образований, имеющих сетчатую структуру с тонкой клеточной стенкой и фибриллярным нуклеоидом;

формирование промежуточных телец - стадии между элементарными и ретикулярными тельцами.

Элементарные тельца являются инфекционной формой хламидий, т. е. обеспечивают передачу заболевания от человека (животного) к человеку (животному). Ретикулярные тельца - вегетативная форма хламидий. Вегетативные формы размножаются путем бинарного деления внутриклеточно, но они не инфекционны, когда выделяются из клетки- хозяина. Жизненный цикл хламидий начинается с того, что элементарные тельца адсорбируются на чувствительных эпителиальных клетках и проникают в них посредством эндоцитоза. В течение последующих нескольких часов элементарные тельца реорганизуются, увеличиваются в размерах и превращаются в ретикулярные формы, которые размножаются путем бинарного деления. Образующиеся дочерние формы также размножаются путем бинарного деления. Жизненный цикл заканчивается, когда возникающие промежуточные формы реорганизуются (уплотняются), уменьшаются в размерах и превращаются в элементарные тельца. Размножаясь внутри цитоплазматических везикул, хламидии формируют микроколонии, окруженные мембраной, образующейся из впячивания мембраны клетки при фагоцитозе элементарного тельца. В составе микроколоний обнаруживаются все три стадии развития хламидий. В одной клетке может быть несколько микроколоний, образующихся в случае фагоцитоза нескольких элементарных телец. После разрыва стенки везикулы и мембраны клетки-хозяина вновь появившиеся хламидии высвобождаются, и элементарные тельца, инфицируя другие клетки, повторяют цикл развития.

В настоящее время род Chlamydia включает три патогенных вида: С. trachomatis (типовой вид рода), C. psittaci и C. pneumoniae. Установлено, что многие штаммы патогенных хламидий вызывают генерализованные инфекции у различных хозяев, некоторые - резко выраженные воспаления в одной или нескольких тканях или органах только определенных видов позвоночных. Штаммы хламидий обнаружены у птиц, млекопитающих (включая приматов) и людей. У людей они вызывают заболевания глаз, мочеполовой и дыхательной систем; у птиц - респираторные болезни и генерализованную инфекцию; у млекопитающих - заболевания дыхательных путей, суставов, плаценты и кишечные болезни. Некоторые штаммы хламидий патогенны и для человека, и для птиц (табл. 15).

 

Заболевания, вызываемые патогенными хламидиями

Виды

Вызываемые заболевания

Способы передачи

С. trachomatis

Трахома (кератоконъюнк- тивит) - хроническое заболевание глаз

Конъюнктивит новорожденных

Урогенитальный хламиди- оз, венерическая лимфо- гранулема

Прямым контактом: с больных глаз на здоровые (занос грязными руками) или через загрязненные предметы

Во время родов от матерей, у которых хламидии имеются в эпителиальных клетках слизистой оболочки мочеполовой системы

Половой

С. psittaci

Орнитозы

При уходе за птицами (больными и носителями), при употреблении в пищу без достаточной термической обработки мяса и яиц инфицированных птиц

С. рпеитопіае

Пневмония, бронхиальная астма, катар верхних дыхательных путей

Контактный (от больного человека). Механизм заражения - воздушнокапельный

 

Миксобактерии и цитофаги

Миксобактерии и цитофаги - это грамотрицательные скользящие бактерии, относящиемя соответственно к порядкам Myxobacteriales и Су-

Миксобактерии имеют относительно крупные клетки (0,6-1,2 х 210 мкм) двух морфологических типов: тонкие гибкие палочки с более или менее суженными концами и относительно толстые палочки цилиндрической формы с закругленными концами. Клетки миксобактерий обычно окрашены в желтый, оранжевый или красный цвет за счет каро- тиноидных пигментов.

Миксобактерии передвигаются путем скольжения по твердой поверхности и способны также проникать в субстрат, продвигаясь внутри, например 1,2-1,5 % агаровых гелей. Скользящие клетки всегда оставляют за собой слизистые треки. В результате скользящего движения клеток колонии миксобактерий распространяются по поверхности субстрата и поэтому называются швармами. Внутри шварма клетки обычно распределены неравномерно, концентрируясь в радиальных тяжах, а иногда в массивных складках по периферии шварма. В условиях голодания клетки скапливаются и агрегируют в определенных участках шварма, образуя крупные глобулярные или гребневидные массы, которые затем дифференцируются в структуры, называемые плодовыми телами (рис. 100).

Рис. 100. Микрофотография плодовых тел у бактерий Stigmatella aurantiaca (Photo by David White colorized by Yves Brun using NIH Image)

 

Плодовые тела варьируют в размерах от 100 до 600 мкм и хорошо заметны благодаря яркой окраске и блестящей поверхности. Плодовые тела имеют разную форму: от микроскопического бугорка до сложных древоподобных структур, они могут располагаться концентрическими кругами или радиальными тяжами. Внутри созревающего плодового тела вегетативные клетки превращаются в покоящиеся миксоспоры. Они устойчивы к высыханию и довольно устойчивы к нагреванию: выживают при температуре 58-60 °С в течение 10-60 мин. Миксоспоры могут иметь сферическую или овальную (например, у представителей родов Myxococcus, Nannocystis и др.) и палочковидную (например, у представителей родов Cystobacter, Polyangium, Stigmatella и др.) форму. Миксобактерии - облигатные аэробы. Большинство из них мезофиллы; оптимальная температура для роста 30-35 °С. Все представители - хемоорганотрофы, способные использовать самые разнообразные органические вещества в качестве источников энергии и углерода. В зависимости от источников питания различают бактериолитические и целлюлозолитические виды. К бакте- риолитическим относятся миксобактерии, входящие в род Myxococcus. Представители этого рода за счет синтеза различных экзоферментов могут разрушать клетки бактерий, дрожжей и других микроорганизмов и использовать полученные вещества в качестве источников энергии и углерода. Такой тип взаимоотношений между микроорганизмами относится к хищничеству. Целлюлозолитические виды содержит род Ро1уап- gium, так как его представители способны гидролизовать целлюлозу. Следует отметить, что некоторые миксобактерии способны синтезировать в значительных количествах стеролы (например, рода ЫаппосузИз).

Миксобактерии присутствуют повсеместно. Особенно обильно встречаются, по-видимому, в теплых, полусухих и сухих местообитаниях, таких как степи и полупустыни субтропического и умеренного поясов. Типичные местообитания миксобактерий - почвы с нейтральным рН и нормальным содержанием солей, разлагающийся органический материал, включая помет травоядных животных и гниющую древесину, кора живых и отмерших деревьев, а также пресная вода.

В отличие от миксобактерий, цитофаги не образуют плодовых тел и имеют другой нуклеотидный состав ДНК. Содержание ГЦ у цитофаг 3050 %, у миксобактерий значительно выше - 67-71 %. Группа цитофаг включает восемь родов, представители которых могут обитать в почве, пресноводных и морских водоемах (например, роды Cytophaga, Р1вх^ас- ter), полости рта (например, род Capnocytophaga), горячих источниках (например, род Thermonema).

Цитофаги - облигатные аэробы или факультативные анаэробы; хемо- органотрофы; метаболизм дыхательного, или бродильного, типа. Глюкозу сбраживают с образованием ацетата, пропионата, сукцината и некоторых других органических кислот. Отдельные представители могут осуществлять нитратное дыхание, используя в качестве конечного акцептора электронов N0-. Для бактерий рода Cytophaga характерна способность разлагать целлюлозу, агар, хитин, пектин и крахмал; рода Flexibac- ter - хитин и крахмал; рода Sporocytophaga - целлюлозу и целлобиозу; рода Microscilla - карбоксиметилцеллюлозу.

Веретенообразные вегетативные клетки бактерий родов Sporocy- tophaga и Chitinophaga могут превращаться в длительно сохраняющиеся круглые клетки, окруженные капсулой - микроцисты (стадия покоя). Бактерии рода Flexithrix могут образовывать чехлы, которые окружают длинные многоклеточные нити с однорядным расположением клеток.

Среди цитофаг встречаются патогенные представители. Например, бактерии рода Capnocytophaga выделяют из полости рта, очагов поражения в легких, крови и абсцессов. Бактерии вида Flexibacter ^Ытшш - возбудитель заболеваний у рыб и часто является причиной их массовой гибели в рыборазводных прудах.

Молочнокислые бактерии

Молочнокислые бактерии относятся к семействам Lactobacillaceae и Streptococcaceae. Это морфологически гетерогенная группа бактерий - включает палочковидные и сферические организмы. Все молочнокислые бактерии грамположительны, не образуют эндоспор (за исключением Sporolactobacillus inulinus) и в подавляющем большинстве неподвижны. Это факультативные анаэробы, использующие в качестве источника энергии углеводы и образующие молочную кислоту. Однако они не способны синтезировать АТФ за счет дыхания, так как не содержат цито- хромы и другие ферменты, имеющие гем. Таким образом, молочнокислые бактерии способны только к брожению, дыхание у них отсутствует.

У всех молочнокислых бактерий обнаруживаются сложные потребности в факторах роста: витаминах группы В, аминокислотах, а также в пуринах и пиримидинах. Следовательно, молочнокислые бактерии - это своего рода «метаболические инвалиды», которые, вероятно, в результате специализации (рост в молоке и других средах, богатых питательными и ростовыми веществами) утратили способность к синтезу многих метаболитов.

Отличительная физиологическая особенность молочнокислых бактерий - их высокая устойчивость к кислоте, что является следствием характерного для них энергетического метаболизма. Способность молочнокислых бактерий образовывать и переносить довольно высокие концентрации молочной кислоты имеет важное селективное значение, так как такое свойство дает им возможность успешно конкурировать с большинством других бактерий в средах, богатых питательными веществами.

Молочнокислые бактерии можно разделить на две физиолого-биохи- мические подгруппы, различающиеся по продуктам, которые образуются из глюкозы в результате брожения.

Гомоферментативные молочнокислые бактерии образуют практически только одну молочную кислоту. К ним относятся бактерии видов Streptococcus lactis, Streptococcus cremoris, Lactobacillus bulgaricus, Lactobacillus lactis и др.

Гетероферментативные молочнокислые бактерии образуют смесь молочной кислоты, этанола и СО2, а иногда и уксусной кислоты. К ним относятся Leuconostoc mesenteroides, Lactobacillus brevis, Bifidobacterium bifidum и др.

Распространение в природе молочнокислых бактерий определяется их сложными потребностями в питательных веществах и способом получения энергии. Они почти никогда не обнаруживаются в почве или водоемах. В естественных условиях они встречаются:

в молоке, молочных продуктах, в местах переработки молока (Lactobacillus bulgaricus, Lactobacillus lactis и другие лактобациллы; Streptococcus lactis);

на поверхности растений как эпифитная микрофлора и на разлагающихся растительных остатках (Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides);

в кишечнике и на слизистых оболочках человека и животных как представители нормальной микрофлоры (Lactobacillus acidophilus, Bifidobacterium bifidum, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus faecalis, Streptococcus bovis и др.).

В связи с тем что молочнокислые бактерии используются для приготовления пищевых продуктов и выступают как возбудители болезней человека и животных, они представляют собой группу большого экономического значения.

Молочнокислые бактерии используются для приготовления:

силоса;

квашеной капусты, огурцов и др. (Leuconostos mesenteroides и Lactobacillus plantarum);

молочнокислых продуктов. Стерилизованное или пастеризованное молоко либо сливки сбраживают, прибавляя в качестве закваски чистые культуры молочнокислых бактерий. Для приготовления различных молочнокислых продуктов берут соответствующие микробные закваски. Например, для приготовления йогурта используют пастеризованное молоко, сквашенное с помощью бактерий Streptococcus thermophilus и Lactobacillus bulgaricus. Для приготовления кефира - Lactococcus lactis, Lactobacillus kefir, Lactobacillus kefiranofaciens; сметаны - Lactococcus cre- moris, Lactococcus lactis, Leuconostoc lactis и Leuconostoc mesenteroides subsp. cremoris (но сквашиваются пастеризованные сливки);

сырокопченых колбас. Образующаяся при брожении молочная кислота придает определенный вкус, а также снижает рН, что предохраняет от порчи те виды колбас, которые не подвергаются варке;

кислого теста в хлебопечении. Образующаяся молочная кислота используется для подъема теста, а также придает хлебу специфический кислый вкус;

получения чистой молочной кислоты, которая применяется в кожевенной, текстильной, фармацевтической, пищевой промышленности и для получения биодеградируемых полилактидов, используемых для упаковки пищевых продуктов.

Молочнокислые бактерии могут играть и отрицательную роль, вызывая порчу пива, фруктовых соков, мяса и других продуктов. В эту группу входят и патогенные для человека и животных бактерии. Они растут на средах сложного состава с сывороткой или эритроцитами или на сывороточном либо кровяном агаре.

В практике широко распространена классификация, основанная на отношении стрептококков к эритроцитам, согласно которой они делятся на три группы:

гемолитические стрептококки, образующие в-гемолизин и дающие на кровяном агаре зону гемолиза вокруг колоний;

 зеленящие стрептококки, синтезирующие а-гемолизин и дающие на кровяном агаре вокруг колоний позеленение среды и частичный гемолиз (позеленение обусловлено превращением оксигемоглобина в метге- моглобин);

стрептококки, не изменяющие кровяного агара.

Патогенные стрептококки образуют различные по своему действию экзотоксины:

 в-гемолизин (гемотоксин, О-стрептолизин и Б-стрептолизин), инактивирующийся при температуре 55 °С в течение 30 мин. Обусловливает разрушение эритроцитов, лейкоцитов, тромбоцитов, макрофагов;

лейкоцидин, разрушающий лейкоциты;

летальный (диализабельный) токсин, обладающий некротическим действием;

эритрогенный термостабильный токсин, обладающий способностью вызывать воспалительную реакцию кожи у животных и у людей, в крови которых отсутствуют антитоксины;

а-гемолизин, секретируемый в питательную среду. Действует как в-гемолизин.

Болезнетворные свойства стрептококков обусловлены, помимо продукции экзотоксинов, и образованием термостабильных эндотоксинов.

Кроме того, патогенные стрептококки образуют ферменты вирулентности: гиалуронидазу, дезоксирибонуклеазу, рибонуклеазу, нейрамини- дазу, протеиназу, стрептокиназу, амилазу, липазу и др.

Возможно экзогенное и эндогенное заражение стрептококками.

Экзогенное заражение стрептококками (от больных людей, животных, инфицированных продуктов и предметов) происходит через наружные кожные покровы и слизистые оболочки, а также при проникновении вместе с пищей стрептококков в кишечник. Основной путь заражения стрептококками - воздушно-капельный.

Эндогенная инфекция оппортунистическими (условно-патогенными) стрептококками - обитателями человеческого тела - возможна в результате ослабления естественной сопротивляемости организма (иммунитета).

Стрептококковые инфекции подразделяют на нагноительные и нена- гноительные. К нагноительным заболеваниям, вызываемым стрептококками, относятся острые инфекции верхних дыхательных путей (в частности, пневмонии), рожистое воспаление, или рожа (воспаление слизистых путей), ангина (воспаление слизистых оболочек зева и миндалин). При проникновении в кровяное русло стрептококки обусловливают тяжело протекающий септический процесс. В группу ненагноительных болезней входят скарлатина, ревматизм и др.

К патогенным относятся зеленящие стрептококки вида Streptococcus pneumoniae. Они чаще вызывают пневмонию, а также септицемию, ангину, гайморит, острые катары верхних дыхательных путей и другие заболевания.

Бактерии вида Streptococcus pyogenes вызывают рожу, абсцессы при раневых инфекциях. Относятся к гемолитическим стрептококкам.

Бактерии вида Streptococcus viridans - постоянные обитатели полости рта и глотки здоровых людей. Относятся к зеленящим стрептококкам. Обладают слабой вирулентностью для человека и животных. Они обнаруживаются при гнойных и воспалительных поражениях зубов и десен, вызывают подострый эндокардит.

Бактерии вида Streptococcus faecalis (энтерококки) обитают в кишечнике человека и теплокровных животных. Обнаружение их служит также одним из критериев фекального загрязнения воды, сточных вод, пищевых продуктов.

Спорообразующие бактерии

В эту группу входят бактерии разной морфологии (клетки в форме палочек, кокков и иногда нитей), большинство из них окрашивается по Граму положительно. Клетки обычно подвижные за счет перитрихиаль- ных жгутиков, образуют устойчивые к нагреванию, сильно преломляющие свет эндоспоры. В группу входят пять основных родов: Bacillus, Sporosarcina, Sporolactobacillus, Clostridium и Desulfotomaculum.

Первичное таксономическое деление на роды основано на отношении бактерий к молекулярному кислороду. Роды Bacillus и Sporosarcina включают облигатные аэробны и факультативные анаэробы. Представители рода Bacillus - грамположительные палочковидные бактерии, рода Sporosarcina - грамположительные кокковидные бактерии.

Представители родов Clostridium и Desulfotomaculum являются облигатными анаэробами. Однако они отличаются друг от друга по характеру энергетического метаболизма и грампринадлежности. Бактерии рода Clostridium окрашиваются по Граму положительно и синтезируют энергию в основном за счет брожения. Бактерии рода Desulfotomaculum по Граму окрашиваются отрицательно, хотя имеют клеточную стенку грам- положительного типа, энергию получают путем анаэробного сульфатного дыхания, используя в качестве конечных акцепторов электронов сульфаты.

Бактерии рода Sporolactobacillus - микроаэрофилы. Клетки палочковидные, подвижные (жгутикование перитрихиальное), грамположительные. Метаболизм бродильный, осуществляют гомоферментативное молочнокислое сбраживание гексоз с образованием молочной кислоты. Клетки не содержат каталазы и цитохромов. Типовой (и единственный) вид Sporolactobacillus inulinus.

К числу наиболее широко распространенных и имеющих значительный практический интерес относятся бактерии родов Bacillus и Clostridium.

К роду Bacillus относятся аэробные или факультативно-анаэробные палочковидные бактерии, большинство из них подвижны. Хемооргано- трофы. Метаболизм строго дыхательный, строго бродильный или дыхательный и бродильный одновременно, с использованием различных субстратов. Некоторые представители способны получать энергию за счет нитратного дыхания. Для большинства представителей рода Bacillus характерно брожение с образованием 2,3-бутандиола, глицерина и СО2, а также небольших количеств молочной кислоты и этанола. Бутандиоло- вое брожение, осуществляемое бактериями рода Bacillus, можно представить следующим образом:

ЗГлюкоза —? 2 (2,3-бутандиол) + 2 глицерин + 4 СО2.

Бактерии рода Bacillus можно разделить на три группы, различающиеся по структуре и внутриклеточной локализации эндоспор:

Споры овальные, расположение их в материнской клетке центральное, растяжение клетки спорой не происходит. Таковы споры у большинства бацилл (B. subtilis, B. cereus, B. megaterium, B. anthracis, B. thu- ringiensis).

Споры овальные, имеющие толстую оболочку с выростами, расположение их в материнской клетке центральное. Они «растягивают» клетки изнутри в ходе споруляции (B. polymyxa, B. stearothermophilus).

Споры сферические, расположение их в материнской клетке полярное. Эндоспоры «растягивают» клетку в ходе споруляции (B. pasteurii).

Большинство представителей рода Bacillus являются сапрофитами, широко распространены в природе, особенно в почвах, богатых органическими веществами (B. subtilis, B. megaterium, B. polymyxa, B. stearother- mophilus, B. licheniformis). B. megaterium считаются «гигантами» среди эубактерий, так как их клетки имеют размеры 2 х 5 мкм. Вид B. subtilis является типовым для рода Bacillus, называется «сенной палочкой» (так как накопительные культуры данных бактерий получают из настоя сена). Бактерии B. polymyxa получили название из-за того, что они образуют большое количество слизи. B. stearothermophilus - выраженный термофил (температурный оптимум для роста 50-65 °С).

Представителями патогенных бацилл являются B. anthracis и B. thu- ringiensis. B. anthracis - возбудитель сибирской язвы. Это нуждающиеся в факторах роста неподвижные бактерии с пептидной капсулой, содержащей в большом количестве D- и L-формы глутаминовой кислоты.

B. thuringiensis - возбудитель паралитического заболевания у гусениц многих чешуекрылых насекомых. Клетки этих бактерий подвижны, зависят от наличия факторов роста. Каждая спорулирующая клетка бактерий B. thuringiensis образует примыкающий к споре кристалл, состоящий из Cry-белков (молекулярная масса 60-140 кД) или из Cyt-белков (молекулярная масса 28 кД). Кристаллы высвобождаются вместе со спорами при аутолизе материнских клеток и попадают в почву, на растения. Личинки насекомых, питающиеся растениями, заглатывают кристаллы вместе со спорами. Кристаллики растворяются в кишечнике только чувствительных личинок, и Cry-белки разрушают клетки их средней кишки, что приводит к выходу содержимого кишечника в гемолимфу и гибели насекомых. Споры при этом прорастают и дают начало новой популяции бактерий, развивающейся в организме погибшего насекомого. Специфичность действия Cry-белков очень высока. В настоящее время известно более 30 классов таких белков, они токсичны для большого числа чешуекрылых насекомых, но не для позвоночных животных. В связи с этим препараты спорообразующих клеток бактерий B. thuringiensis нашли широкое применение в сельском хозяйстве в качестве инсектицида. Включения токсичных для насекомых белков известны и у других бацилл, например у B. laterosporus, B. sphaericus, B. popilliae.

Бактерии рода Bacillus являются активными продуцентами различных антибиотических веществ. В настоящее время известно около 200 антибиотиков, синтезируемых этими бактериями. Наиболее продуктивными являются бактерии вида B. subtilis - для них описано более 70 различных антибиотиков. Около 30 антибиотиков продуцируют культуры B. brevis. Различные антибиотики синтезируют также бактерии видов B. polymyxa,

cereus, B. circulans, B. megaterium, B. licheniformis и др. Большинство антибиотиков бактерий рода Bacillus - полипептиды, активные против грамположительных и грамотрицательных бактерий, а также дрожжей и микроскопических грибов. Однако антибиотики бактерий рода Bacillus могут относиться и к другим классам химических соединений. Так, антибиотик бутирозин, продуцируемый бактериями B. circulans, является аминогликозидом, а антибиотик протицин бактерий B. licheniformis - фосфосодержащим триеном. Некоторые антибиотики бактерий рода Bacillus широко используются в медицине, сельском хозяйстве и пищевой промышленности. К ним относятся полимиксины, колистин, бацитрацин, грамицидин С, субтилин, эдеин, бутирозин и др.

Анаэробные спорообразующие бактерии рода Clostridium - палочки с закругленными или иногда заостренными концами, часто расположенные в парах или коротких цепочках. Большинство из них подвижны за счет перитрихиальных жгутиков. Образуют овальные или сферические эндоспоры, располагающиеся субтерминально, центрально или терминально. Как правило, диаметр спор больше диаметра вегетативной клетки, поэтому палочка со спорой приобретает сходство с веретеном, отсюда и произошло название рода. Большинство штаммов рода Clostridium - облигатные анаэробы, хотя некоторые могут расти в присутствии воздуха. Хемоорганотрофы, энергию получают в основном за счет маслянокислого брожения. Возбудителями классического маслянокислого брожения являются C. butyricum, C. pasteurianum, C. rubrum и др. В качестве основных продуктов они образуют масляную и уксусную кислоты, углекислый газ и молекулярный водород. Другие представители (C. acetobu- tyricum, C. felsineum, C. sporogenes и др.) осуществляют ацетонобутиловое брожение, при котором кроме масляной кислоты образуются нейтральные продукты: ацетон, бутиловый, этиловый, изопропиловый спирты.

Клостридии сбраживают большое число субстратов, включая полисахариды, белки, аминокислоты и пурины. В зависимости от вида сбраживаемого субстрата выделяют несколько физиологических групп клостри- дий:

сахаролитические, использующие в качестве субстратов моносахара, крахмал, пектин, целлюлозу и другие вещества углеводной природы (C. pasteurianum, C. butyricum, C. acetobutyricum, C. felsineum);

протеолитические, сбраживающие белки, пептиды, аминокислоты (C. botulinum, C. tetani, C. putribicum, C. sporogenes, C. histolyticum и др.);

пуринолитические, сбраживающие гетероциклические азотсодержащие соединения - пурины и пиримидины (C. acidiurici, C. cylindrospo- rum).

Потребности клостридий в питательных веществах весьма разнообразны. Как правило, они могут расти только на сложных, богатых органическими соединениями средах. Для них выявлена потребность в определенных витаминах и наборе аминокислот.

Для многих сахаролитических клостридий характерна способность фиксировать атмосферный азот. Первый анаэробный азотфиксатор был выделен из почвы русским микробиологом С. Н. Виноградским и назван им в честь Л. Пастера Clostridium pasteurianum.

Клостридии широко распространены в природе. Естественной средой их обитания является почва, особенно ее глубокие слои, ил различных водоемов, сточные воды, кишечный тракт травоядных животных и человека. Среди клостридий выделяют как сапрофитные, так и патогенные формы. К сапрофитным относятся C. pasteurianum, C. acetobutyricum,

butyricum (типовой вид). Патогенные клостридии: C. tetani - возбудитель столбняка; C. botulinum - возбудитель ботулизма; C. histolyticum, C. septicum, C. perfringens, C. novyi, C. sordelli - возбудители газовой гангрены. Патогенные клостридии, как правило, относятся к протеолитиче- ским.

Бактерии рода Clostridium играют важную роль в круговороте веществ в природе, особенно азота и углерода, осуществляя процессы гниения, брожения и фиксации молекулярного азота. Некоторые представители клостридий используются для промышленного получения масляной кислоты, бутанола, ацетона (C. butyricum, C. acetobutyricum). Анаэробные клостридии применяются также при мочке льна, конопли и других прядильных культур.



загрузка...