загрузка...
 
Колючая линия
Повернутись до змісту

Колючая линия

На протяжении многих столетий математики имели дело лишь с линиями, почти в каждой точке которых можно было провести касательную. Если и встречались исключения, то только в нескольких точках. В этих точках линия как бы ломалась, и потому их называли точками излома. Линия, изображенная на рис. 39 а, имеет две точки излома, а линия, изображенная на рис. 39 б, — десять точек излома.

 

Но линии, которые мы только что построили, имеют уже бесконечно много точек излома: линия на рис. 35 — счетное множество таких точек, а линия на рис. 37 — целый континуум точек излома. Она ломается во всех точках канторова множества, а кроме того, в вершинах всех треугольников. Однако даже линия на рис. 37 имеет изломы на сравнительно «маленьком» множестве точек, длина которого равна нулю.

В течение долгого времени никто из математиков не верил, что может существовать непрерывная линия, целиком состоящая из зубцов, изломов и колючек. Велико было изумление математиков, когда удалось построить такую линию, более того, функцию, график которой был такой колючей изгородью. Первым сделал это чешский ученый Больцано. Но его работа осталась неопубликованной, и впервые такой пример опубликовал немецкий математик К. Вейерштрасс. Однако пример Вейерштрасса очень трудно изложить — он основан на теории тригонометрических рядов. Пример же Больцано совсем простой и очень напоминает линии, которые мы строили раньше.

Мы расскажем сейчас пример Больцано с небольшими изменениями. Разделим отрезок [0; 1] на четыре равные части и над двумя средними частями построим равнобедренный прямоугольный треугольник (рис. 40 а). Получившаяся линия является графиком некоторой функции, которую обозначим через у = / (ж).

Рис. 40

 

Разделим теперь каждую из четырех частей еще на четыре равные части и в соответствии с этим построим еще четыре равнобедренных прямоугольных треугольника (рис. 40 б). Мы получим график второй функции у = /2(ж). Если сложить эти две функции, то график суммы у = /1 (ж) + /2 (ж) будет иметь вид, изображенный на рис. 40 в. Видно, что получившаяся линия имеет уже больше изломов и эти изломы гуще расположены. На следующем шаге мы снова разделим каждую часть еще на четыре части, построим 16 равнобедренных прямоугольных треугольников и прибавим соответствующую функцию у = /з (ж) к функции у = /1 (ж) + /2 (ж).

Продолжая этот процесс, мы будем получать все более и более изломанные линии. В пределе получится линия, у которой излом в каждой точке, и ни в одной точке к ней нельзя провести касательную.

Похожий пример линии, нигде не имеющей касательной, построил голландский ученый Ван-дер-Варден. Он взял равносторонний треугольник, разделил каждую его сторону на три равные части и на средних частях построил новые равносторонние треугольники, смотрящие наружу. У него получилась шестиугольная звезда (рис. 41 а). Теперь каждую из двенадцати сторон этой звезды он разделил еще на три части и снова на каждой из средних частей построил правильный треугольник. Получилась еще более колючая линия, изображенная на рис. 41 б. После бесконечного числа делений

Рис. 41

 

и построений правильных треугольников получилась линия, в каждой точке которой есть излом, колючка.

Математики построили много непрерывных функций, графики которых не имели касательной ни в одной точке, и начали изучать их свойства. Эти свойства совсем не походили на свойства «добропорядочных» гладких функций, с которыми они до тех пор имели дело. Поэтому математики, воспитанные в классических традициях, с изумлением смотрели на новые функции. Более того, виднейший представитель классического математического анализа Шарль Эр- мит так писал своему другу, голландскому математику Стильтьесу: «Я с ужасом отворачиваюсь от этой достойной сожаления язвы непрерывных функций, не имеющих производной ни в одной точке» (то есть, как мы их называли, всюду колючих линий).

Известный французский ученый А. Пуанкаре писал:

«Некогда при нахождении новых функций имелась в виду какая- нибудь практическая цель. Теперь функции изобретаются специально для того, чтобы обнаружить недостаточность рассуждений наших отцов; никакого иного вывода, кроме этого, из них нельзя извлечь».

Но дальнейшее развитие науки показало, что Пуанкаре был неправ. В физике встречаются линии, очень напоминающие всюду колючие линии Ван-дер-Вардена и других. Это — траектории

частиц, совершающих под ударами молекул броуновское движение. Французский ученый Ф. Перрен сделал зарисовки движения таких частиц. Он наблюдал их положения через каждые полминуты и соединял полученные точки прямолинейными отрезками. В результате у него получились запутанные ломаные, вроде изображенных на рис. 42. Но не следует думать, что в действительности между отдельными наблюдениями частица двигалась по прямой. Если бы Перрен наблюдал ее не через полминуты, а через полсекунды, то каждый прямолинейный отрезок пришлось бы заменить Рис. 42  ломаной,     столь     же   сложной,  как

и ломаные на рис. 42. И чем меньше были бы промежутки между наблюдениями, тем сложнее и «колючее» становилась бы ломаная. Американский математик

Н.   Винер показал, что движение броуновской частицы, настолько малой, что ее инерцией можно пренебречь, совершается по линии, нигде не имеющей касательной.



загрузка...