загрузка...
 
Нужны ли строгие определения?
Повернутись до змісту

Нужны ли строгие определения?

На протяжении двух тысячелетий авторитет Евклида стоял совершенно незыблемо. Усомниться в каком-нибудь его положении означало окончательно и бесповоротно подорвать свою математическую репутацию. Один из величайших математиков XIX века Карл Фридрих Гаусс, еще до Лобачевского пришедший к идеям неевклидовой геометрии, не решился опубликовать свои исследования, опасаясь, как он писал одному другу, крика беотийцев. И только научный подвиг великого русского геометра Николая Ивановича Лобачевского, который опубликовал свои открытия, невзирая на насмешки не понимавших его ученых, сделал неевклидову геометрию всеобщим достоянием.

После появления трудов Н. И. Лобачевского стало ясно, что существуют две геометрии, одинаково безупречные логически, но иногда приводящие к совершенно различным теоремам. Но если это так, то всякие ссылки на «геометрическую очевидность» полностью потеряли цену. Каждое геометрическое утверждение надо было основывать на строгих определениях, безупречных логических утверждениях. И уж во всяком случае основным геометрическим понятиям — линии, фигуре, телу — надо было дать точные определения, ничем не напоминающие определения типа «это — особь статья, а то — особь статья».

Стремление к строгим определениям характеризовало не только геометрию, но и математический анализ XIX века. С помощью дифференциального и интегрального исчислений, созданных трудами Ньютона, Лейбница, Эйлера, Лагранжа и других великих математиков XVII и XVIII веков, удалось решить самые разнообразные задачи, от расчета траектории артиллерийского снаряда до предсказания движений планет и комет. Но основные понятия, с помощью которых достигались эти замечательные результаты, были определены крайне нестрого. Основа тогдашнего математического анализа — понятие бесконечно малой величины — казалось чем-то стоящим на грани бытия и небытия, чем-то вроде нуля, но не совсем нуля. И математики XVIII века были вынуждены ободрять своих сомневающихся учеников словами: «Работайте, и вера к вам придет».

Но ведь математика — не религия, строить ее на вере нельзя. А самое главное — методы, дававшие столь замечательные результаты в руках великих мастеров, стали приводить к ошибкам и парадоксам, когда ими стали пользоваться менее талантливые ученики. Мастеров оберегала от ошибок их абсолютная математическая интуиция, то подсознательное чувство, которое часто приводит к правильному ответу скорее, чем длинные логические рассуждения. Ученики же такой интуицией не обладали, и конец XVIII века ознаменовался неслыханным скандалом в математике — наплывом формул, стоивших меньше, чем бумага, на которой они были напечатаны, и сомнительных теорем, область приложимости которых была совершенно неясна.

И, подобно детям, ломающим красивую игрушку, чтобы посмотреть, как она устроена, математики XIX века подвергли жестокой критике все применявшиеся до того понятия, стали перестраивать математику на базе строгих определений. Ссылки на наглядность отвергались, вместо нее требовали строжайшей логики. Но требованиям логики не удовлетворяли самые простые фразы из курса математического анализа, например, такие, как: «Рассмотрим область С, ограниченную замкнутой линией Г».

Что такое замкнутая линия? Почему она является границей области? На сколько частей замкнутая линия разбивает плоскость, и какую из этих частей рассматривают?

На все эти вопросы математики XVIII века не давали ответа. Они просто рисовали овал и думали, что этим все сказано. А в XIX веке рисункам уже не верили. Для аналитиков вопрос «что такое линия?» тоже стал одним из самых жгучих.

Однако прошло много времени, прежде чем удалось дать на него исчерпывающий ответ.



загрузка...