загрузка...
 
1. Фізичні основи механічних торцевих ущільнень 1.1 Принцип роботи
Повернутись до змісту

1. Фізичні основи механічних торцевих ущільнень 1.1 Принцип роботи

В данний час торцеві механічні ущільнення знаходять все більш широке застосування завдяки таким важливим якостям, як герметичність та довговічність. За кордоном сформувалася спеціалізована галузь з виробництва торцевих механічних ущільнень. Провідні фірми Ф. Бургман, Пасифік, Меркель (ФРН), Флексибокс, Крейн Пекінг (Англія), Борг-Вонер, Гарлок, Локхід (США) та інші поставляють комплектні вузли ущільнень для широкого діапазону параметрів та умов роботи, гарантуючи ресурс десятки тисяч годин.

 

Рисунок 1 - Торцеве механічне ущільнення

Найпростіша конструкція торцевого ущільнення (рис. 1) має нерухоме 2 та аксіально рухоме 3 ущільнювальне кільця із зносостійкого матеріалу, які закріплені в обоймах 1 та 5. Попередній контактний тиск між кільцями забезпечується силою стиснення пружини 6, а потім збільшується за рахунок сили тиску ущільнювальної рідини. Зазор між валом та аксіально рухомим кільцем 3 герметизується вторинним ущільненням 4; крутильний момент, необхідний для подолання тертя на контактних торцевих поверхнях, передається від вала на кільце, що обертається, через паводковий пристрій: штифт 7 та юбка кільця з поздовжнім пазом.

Герметизація здійснюється за рахунок стиснення торцевих поверхонь нерухомого 2 та рухомого 3 кілець. Із збільшенням контактного тиску герметичність підвищується, проте при цьому збільшуються втрати потужності на тертя, внаслідок чого підвищується знос поверхонь, що труться, їх нагрів та температурні деформації. Таким чином, працездатність ущільнення визначається перш за все контактним тиском та фізичними процесами на контактуючих та обертових стосовно одна одної торцевих поверхонь.

На підставі наявних експериментальних даних роботу ущільнення спрощено можна представити. Коли весь зазор заповнений рідиною, існують неминучі витоки, які відводять тепло від пари тертя, та в нормальних умовах встановлюється тепловий баланс. При збільшенні втрат потужності на тертя (наприклад, через зростання колової швидкості) температура в шарі зростає, та може настати момент, коли рідина в цьому шарі почне кипіти. Як правило, це відбувається в ділянці, прилеглій до зовнішньої камери з низьким тиском, де температура максимальна, оскільки температура рідини підвищується в міру її протікання у зазорі від області високого до області низького тиску. Утворюються рідка та пароподібна фази, а межа поділу між ними може рухатися по радіусу; область рідкої фази зменшується у міру збільшення втрат потужності на тертя.

На поверхні розділу за рахунок енергії тертя відбувається інтенсивне пароутворення. Тому температура в зазорі стабілізується, тим паче, що утворення пару зменшує силу в'язкого тертя. За несприятливих умов рідка фаза може зменшуватися настільки, що шар рідини в зазорі втратить суцільність. Це веде до різкого підвищення температури, та нормальна робота ущільнення порушується.

Таким чином, якщо допускаються видимі витоки, необхідно забезпечити нормальне відведення тепла, щоб запобігти пароутворенню. Якщо ж ущільнення повинні працювати без видимих витоків, необхідно стабілізувати положення межі поділу фаз. У зв'язку з цим при малих окружних швидкостях та в'язких рідинах може виявитися корисним навіть зменшення тепловідведення. При великих же швидкостях необхідно забезпечувати надійне охолоджування пар тертя.

Складністю процесів тертя та зношування обумовлені основні труднощі розрахунку торцевих механічних ущільнень та прогнозування їх експлуатаційних характеристик. У цьому випадку практика значно випереджає теорію: гострота проблеми герметизації роторів змушує часто на дотик шукати та знаходити правильні конструктивні та технологічні рішення для різних ущільнювальних рідин, їх тиску, колових швидкостей, температур, вимог до надійності, довговічності та герметичності при економічно виправданій вартості.



загрузка...