В сетях с небольшим (10-30) количеством компьютеров чаще всего используется одна из типовых топологий – общая шина, кольцо, звезда или полносвязная сеть. Все перечисленные топологии обладают свойством однородности, то есть все компьютеры в такой сети имеют одинаковые права в отношении доступа к другим компьютерам (за исключением центрального компьютера при соединении звезда) [4]. Такая однородность структуры делает простой процедуру наращивания числа компьютеров, облегчает обслуживание и эксплуатацию сети.
Однако при построении больших сетей однородная структура связей превращается из преимущества в недостаток. В таких сетях использование типовых структур порождает различные ограничения, важнейшими из которых являются:
-ограничения на длину связи между узлами;
-ограничения на количество узлов в сети.
Например, технология Ethernet на тонком коаксиальном кабеле позволяет использовать кабель длиной не более 185 метров, к которому можно подключить не более 30 компьютеров. Однако, если компьютеры интенсивно обмениваются информацией между собой, иногда приходится снижать число подключенных к кабелю компьютеров до 20, а то и до 10, чтобы каждому компьютеру доставалась приемлемая доля общей пропускной способности сети.
Для снятия этих ограничений используются специальные методы структуризации сети и специальное структурообразующее оборудование – повторители, концентраторы, мосты, коммутаторы, маршрутизаторы. Оборудование такого рода также называют коммуникационным, имея в виду, что с помощью него отдельные сегменты сети взаимодействуют между собой.
Под физической структуризацией сети понимается способ применения такого структурообразующего оборудования, как повторители и концентраторы, для снятия ограничений на длину связи между узлами и на количество узлов в сети.
Простейшие из коммуникационных устройств – повторитель (repeater) – используется для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети. Повторитель передает сигналы, приходящие из одного сегмента сети, в другие ее сегменты рис. 3.2. Повторитель позволяет преодолеть ограничения на длину линий связи за счет улучшения качества передаваемого сигнала – восстановления его мощности и амплитуды, улучшения фронтов и т.п.
Повторитель, который имеет несколько портов и соединяет несколько физических сегментов, называют концентратором (concentrator) или хабом (hub). Эти названия (hub – основа, центр деятельности) отражают тот факт, что в данном устройстве сосредоточиваются все связи между сегментами сети.
Концентраторы характерны практически для всех базовых технологий локальных сетей – Ethernet, ArcNet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN.
Рисунок 3.2 – Физическая структуризация сети с помощью повторителей
Нужно подчеркнуть, что в работе концентраторов любых технологий много общего – они повторяют сигналы, пришедшие с одного из своих портов, на других своих портах. Разница состоит в том, на каких именно портах повторяются входные сигналы. Так, концентратор Ethernet повторяет входные сигналы на всех своих портах, кроме того, с которого сигналы поступают (рис. 3.3 а). А концентратор Token Ring (рис. 3.3 б) повторяет входные сигналы, поступающие с некоторого порта, только на одном порту – на том, к которому подключен следующий в кольце компьютер.
Рисунок 3.3 - Концентраторы различных технологий
Напомним, что под физической топологией понимается конфигурация связей, образованных отдельными частями кабеля, а под логической – конфигурация информационных потоков между компьютерами сети. Во многих случаях физическая и логическая топологии сети совпадают. Например, сеть, представленная на рис. 3.4 а, имеет физическую топологию кольцо. Компьютеры этой сети получают доступ к кабелям кольца за счет передачи друг другу специального кадра – маркера, причем этот маркер также передается последовательно от компьютера к компьютеру в том же порядке, в котором компьютеры образуют физическое кольцо, то есть компьютер А передает маркер компьютеру В, компьютер В – компьютеру С и т.д.
Рисунок 3.4 - Логическая и физическая топологии сети
Сеть, показанная на рис. 3.4 б демонстрирует пример несовпадения физической и логической топологии. Физически компьютеры соединены по топологии общая шина. Доступ же к шине происходит не по алгоритму случайного доступа, применяемому в технологии Ethernet, а путем передачи маркера в кольцевом порядке: от компьютера А - компьютеру В, от компьютера В - компьютеру С и т.д. Здесь порядок передачи маркера уже не повторяет физические связи, а определяется логическим конфигурированием драйверов сетевых адаптеров. Ничто не мешает сетевые адаптеры и их драйверы применить так, чтобы компьютеры образовали кольцо в другом порядке, например: В, А, С… При этом физическая структура сети никак не изменяется.
Другим примером несовпадения физической и логической топологий сети является уже рассмотренная сеть на рис. 3.3 а. Концентратор Ethernet поддерживает в сети физическую топологию звезда. Однако логическая топология сети осталась без изменений – это общая шина. Так как концентратор повторяет данные, пришедшие с любого порта, на всех остальных портах, то они появляются одновременно на всех физических сегментах сети, как и в сети с физической общей шиной. Логика доступа к сети совершенно не меняется: все компоненты алгоритма случайного доступа (определение незанятости среды, захват среды, распознавание и отработка коллизий) остаются в силе.
Физическая структуризация сети с помощью концентраторов полезна не только для увеличения расстояния между узлами сети, но и для повышения ее надежности. Например, если какой-либо компьютер сети Ethernet с физической общей шиной из-за сбоя начинает непрерывно передавать данные по общему кабелю, то вся сеть выходит из строя, и для решения этой проблемы остается только один выход – вручную отсоединить сетевой адаптер этого компьютера от кабеля. В сети Ethernet, построенной с использованием концентратора, эта проблема может быть решена автоматически – концентратор отключает свой порт, если обнаруживает, что присоединенный к нему узел слишком долго монопольно занимает сеть. Концентратор может блокировать некорректно работающий узел и в других случаях, выступая в роли некоторого управляющего узла.